Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason R. Buck is active.

Publication


Featured researches published by Jason R. Buck.


Nature Chemical Biology | 2009

Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness

Sarah A. Scott; Paige E. Selvy; Jason R. Buck; Hyekyung P. Cho; Tracy L. Criswell; Ashley L Thomas; Michelle D. Armstrong; Carlos L. Arteaga; Craig W. Lindsley; H. Alex Brown

Phospholipase D (PLD) is an essential enzyme responsible for the production of the lipid second messenger phosphatidic acid. Phosphatidic acid participates in both G protein-coupled receptor and receptor tyrosine kinase signal transduction networks. The lack of potent and isoform-selective inhibitors has limited progress in defining the cellular roles of PLD. We used a diversity-oriented synthetic approach and developed a library of PLD inhibitors with considerable pharmacological characterization. Here we report the rigorous evaluation of that library, which contains highly potent inhibitors, including the first isoform-selective PLD inhibitors. Specific members of this series inhibit isoforms with >100-fold selectivity both in vitro and in cells. A subset of inhibitors was shown to block invasiveness in metastatic breast cancer models. These findings demonstrate the power of diversity-oriented synthesis combined with biochemical assays and mass spectrometric lipid profiling of cellular responses to develop the first isoform-selective PLD inhibitors--a new class of antimetastatic agents.


Clinical Cancer Research | 2009

Imaging Biomarkers Predict Response to Anti-HER2 (ErbB2) Therapy in Preclinical Models of Breast Cancer

Chirayu Shah; Todd W. Miller; Shelby K. Wyatt; Eliot T. McKinley; Maria Graciela Olivares; Violeta Sanchez; Donald D. Nolting; Jason R. Buck; Ping Zhao; M. Sib Ansari; Ronald M. Baldwin; John C. Gore; Rachel Schiff; Carlos L. Arteaga; H. Charles Manning

Purpose: To evaluate noninvasive imaging methods as predictive biomarkers of response to trastuzumab in mouse models of HER2-overexpressing breast cancer. The correlation between tumor regression and molecular imaging of apoptosis, glucose metabolism, and cellular proliferation was evaluated longitudinally in responding and nonresponding tumor-bearing cohorts. Experimental Design: Mammary tumors from MMTV/HER2 transgenic female mice were transplanted into syngeneic female mice. BT474 human breast carcinoma cell line xenografts were grown in athymic nude mice. Tumor cell apoptosis (NIR700-Annexin V accumulation), glucose metabolism [2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography ([18F]FDG-PET)], and proliferation [3′-[18F]fluoro-3′-deoxythymidine-PET ([18F]FLT-PET)] were evaluated throughout a biweekly trastuzumab regimen. Imaging metrics were validated by direct measurement of tumor size and immunohistochemical analysis of cleaved caspase-3, phosphorylated AKT, and Ki67. Results: NIR700-Annexin V accumulated significantly in trastuzumab-treated MMTV/HER2 and BT474 tumors that ultimately regressed but not in nonresponding or vehicle-treated tumors. Uptake of [18F]FDG was not affected by trastuzumab treatment in MMTV/HER2 or BT474 tumors. [18F]FLT-PET imaging predicted trastuzumab response in BT474 tumors but not in MMTV/HER2 tumors, which exhibited modest uptake of [18F]FLT. Close agreement was observed between imaging metrics and immunohistochemical analysis. Conclusions: Molecular imaging of apoptosis accurately predicts trastuzumab-induced regression of HER2+ tumors and may warrant clinical exploration to predict early response to neoadjuvant trastuzumab. Trastuzumab does not seem to alter glucose metabolism substantially enough to afford [18F]FDG-PET significant predictive value in this setting. Although promising in one preclinical model, further studies are required to determine the overall value of [18F]FLT-PET as a biomarker of response to trastuzumab in HER2+ breast cancer.


Bioorganic & Medicinal Chemistry Letters | 2009

Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: Impact of alternative halogenated privileged structures for PLD1 specificity

Jana A. Lewis; Sarah A. Scott; Robert R. Lavieri; Jason R. Buck; Paige E. Selvy; Sydney L. Stoops; Michelle D. Armstrong; H. Alex Brown; Craig W. Lindsley

This Letter describes the synthesis and structure-activity-relationships (SAR) of isoform-selective PLD inhibitors. By virtue of the installation of alternative halogenated piperidinyl benzimidazolone privileged structures, in combination with a key (S)-methyl group, novel PLD inhibitors with low nM potency and unprecedented levels of PLD1 isoform selectivity (approximately 1700-fold) over PLD2 were developed.


The Journal of Nuclear Medicine | 2012

Quantitative Preclinical Imaging of TSPO Expression in Glioma Using N,N-Diethyl-2-(2-(4-(2-18F-Fluoroethoxy)Phenyl)-5,7-Dimethylpyrazolo[1,5-a]Pyrimidin-3-yl)Acetamide

Dewei Tang; Matthew R. Hight; Eliot T. McKinley; Allie Fu; Jason R. Buck; R. Adam Smith; M. N. Tantawy; Todd E. Peterson; Daniel C. Colvin; M. Sib Ansari; Michael L. Nickels; H. Charles Manning

There is a critical need to develop and rigorously validate molecular imaging biomarkers to aid diagnosis and characterization of primary brain tumors. Elevated expression of translocator protein (TSPO) has been shown to predict disease progression and aggressive, invasive behavior in a variety of solid tumors. Thus, noninvasive molecular imaging of TSPO expression could form the basis of a novel, predictive cancer imaging biomarker. In quantitative preclinical PET studies, we evaluated a high-affinity pyrazolopyrimidinyl-based TSPO imaging ligand, N,N-diethyl-2-(2-(4-(2-18F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide (18F-DPA-714), as a translational probe for quantification of TSPO levels in glioma. Methods: Glioma-bearing rats were imaged with 18F-DPA-714 in a small-animal PET system. Dynamic images were acquired simultaneously on injection of 18F-DPA-714 (130–200 MBq/0.2 mL). Blood was collected to derive the arterial input function (AIF), with high-performance liquid chromatography radiometabolite analysis performed on selected samples for AIF correction. Compartmental modeling was performed using the corrected AIF. Specific tumor cell binding of DPA-714 was evaluated by radioligand displacement of 3H-PK 11195 with DPA-714 in vitro and displacement of 18F-DPA-714 with an excess of DPA-714 in vivo. Immediately after imaging, tumor and healthy brain tissues were harvested for validation by Western blotting and immunohistochemistry. Results: 18F-DPA-714 was found to preferentially accumulate in tumors, with modest uptake in the contralateral brain. Infusion with DPA-714 (10 mg/kg) displaced 18F-DPA-714 binding by greater than 60% on average. Tumor uptake of 18F-DPA-714 was similar to another high-affinity TSPO imaging ligand, 18F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline, and agreed with ex vivo assay of TSPO levels in tumor and healthy brain. Conclusion: These studies illustrate the feasibility of using 18F-DPA-714 for visualization of TSPO-expressing brain tumors. Importantly, 18F-DPA-714 appears suitable for quantitative assay of tumor TSPO levels in vivo. Given the relationship between elevated TSPO levels and poor outcome in oncology, these studies suggest the potential of 18F-DPA-714 PET to serve as a novel predictive cancer imaging modality.


Journal of Medicinal Chemistry | 2013

Synthesis and Structure-Activity Relationships of 5,6,7-substituted Pyrazolopyrimidines: Discovery of a novel TSPO PET Ligand for Cancer Imaging

Dewei Tang; Eliot T. McKinley; Matthew R. Hight; Md. Imam Uddin; Joel M. Harp; Allie Fu; Michael L. Nickels; Jason R. Buck; H. Charles Manning

Focused library synthesis and structure-activity relationship development of 5,6,7-substituted pyrazolopyrimidines led to the discovery of 2-(5,7-diethyl-2-(4-(2-fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide (6b), a novel translocator protein (TSPO) ligand exhibiting a 36-fold enhancement in affinity compared to another pyrazolopyrimidine-based TSPO ligand, 6a (DPA-714). Radiolabeling with fluorine-18 ((18)F) facilitated production of 2-(5,7-diethyl-2-(4-(2-[(18)F]fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide ((18)F-6b) in high radiochemical yield and specific activity. In vivo studies of (18)F-6b were performed which illuminated this agent as an improved probe for molecular imaging of TSPO-expressing cancers.


Tetrahedron | 1998

A convenient synthesis of 3,6-substituted carbazoles via nickel catalyzed cross-coupling

Minnie Park; Jason R. Buck; Carmelo J. Rizzo

Abstract Alkyl, vinyl and aryl substituted carbazoles at the 3- and 6-positions are prepared in high yield from the corresponding 3,6-dibromocarbazole via nickel catalyzed coupling with Grignard reagents (Corriu-Kumada coupling).


Molecular Imaging and Biology | 2014

Preclinical imaging evaluation of novel TSPO-PET ligand 2-(5,7-Diethyl-2-(4-(2-[(18)F]fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide ([ (18)F]VUIIS1008) in glioma.

Dewei Tang; Michael L. Nickels; M. Noor Tantawy; Jason R. Buck; H. Charles Manning

PurposeTranslocator protein (TSPO) concentrations are elevated in glioma, suggesting a role for TSPO positron emission tomography (PET) imaging in this setting. In preclinical PET studies, we evaluated a novel, high-affinity TSPO PET ligand, [18F]VUIIS1008, in healthy mice and glioma-bearing rats.ProceduresDynamic PET data were acquired simultaneously with [18F]VUIIS1008 injection, with binding reversibility and specificity evaluated in vivo by non-radioactive ligand displacement or blocking. Compartmental analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry.Results[18F]VUIIS1008 exhibited rapid uptake in TSPO-rich organs. PET ligand uptake was displaceable with non-radioactive VUIIS1008 or PBR06 in mice. Tumor accumulation of [18F]VUIIS1008 was blocked by pretreatment with VUIIS1008 in rats. [18F]VUIIS1008 exhibited improved tumor-to-background ratio and higher binding potential in tumors compared to a structurally similar pyrazolopyrimidine TSPO ligand, [18F]DPA-714.ConclusionsThe PET ligand [18F]VUIIS1008 exhibits promising characteristics as a tracer for imaging glioma. Further translational studies appear warranted.


Clinical Cancer Research | 2014

A Peptide-Based Positron Emission Tomography Probe for In Vivo Detection of Caspase Activity in Apoptotic Cells

Matthew R. Hight; Yiu-Yin Cheung; Michael L. Nickels; Eric S. Dawson; Ping Zhao; Samir Saleh; Jason R. Buck; Dewei Tang; M. Kay Washington; Robert J. Coffey; H. Charles Manning

Purpose: Apoptosis, or programmed cell death, can be leveraged as a surrogate measure of response to therapeutic interventions in medicine. Cysteine aspartic acid–specific proteases, or caspases, are essential determinants of apoptosis signaling cascades and represent promising targets for molecular imaging. Here, we report development and in vivo validation of [18F]4-fluorobenzylcarbonyl–Val–Ala–Asp(OMe)–fluoromethylketone ([18F]FB-VAD-FMK), a novel peptide-based molecular probe suitable for quantification of caspase activity in vivo using positron emission tomography (PET). Experimental Design: Supported by molecular modeling studies and subsequent in vitro assays suggesting probe feasibility, the labeled pan-caspase inhibitory peptide, [18F]FB-VAD-FMK, was produced in high radiochemical yield and purity using a simple two-step, radiofluorination. The biodistribution of [18F]FB-VAD-FMK in normal tissue and its efficacy to predict response to molecularly targeted therapy in tumors was evaluated using microPET imaging of mouse models of human colorectal cancer. Results: Accumulation of [18F]FB-VAD-FMK was found to agree with elevated caspase-3 activity in response to Aurora B kinase inhibition as well as a multidrug regimen that combined an inhibitor of mutant BRAF and a dual PI3K/mTOR inhibitor in V600EBRAF colon cancer. In the latter setting, [18F]FB-VAD-FMK PET was also elevated in the tumors of cohorts that exhibited reduction in size. Conclusions: These studies illuminate [18F]FB-VAD-FMK as a promising PET imaging probe to detect apoptosis in tumors and as a novel, potentially translatable biomarker for predicting response to personalized medicine. Clin Cancer Res; 20(8); 2126–35. ©2014 AACR.


PLOS ONE | 2015

Preclinical TSPO Ligand PET to Visualize Human Glioma Xenotransplants: A Preliminary Study.

Jason R. Buck; Eliot T. McKinley; Allie Fu; Ty W. Abel; Reid C. Thompson; Lola B. Chambless; Jennifer M. Watchmaker; James P. Harty; Michael K. Cooper; H. Charles Manning

Current positron emission tomography (PET) imaging biomarkers for detection of infiltrating gliomas are limited. Translocator protein (TSPO) is a novel and promising biomarker for glioma PET imaging. To validate TSPO as a potential target for molecular imaging of glioma, TSPO expression was assayed in a tumor microarray containing 37 high-grade (III, IV) gliomas. TSPO staining was detected in all tumor specimens. Subsequently, PET imaging was performed with an aryloxyanilide-based TSPO ligand, [18F]PBR06, in primary orthotopic xenograft models of WHO grade III and IV gliomas. Selective uptake of [18F]PBR06 in engrafted tumor was measured. Furthermore, PET imaging with [18F]PBR06 demonstrated infiltrative glioma growth that was undetectable by traditional magnetic resonance imaging (MRI). Preliminary PET with [18F]PBR06 demonstrated a preferential tumor-to-normal background ratio in comparison to 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). These results suggest that TSPO PET imaging with such high-affinity radiotracers may represent a novel strategy to characterize distinct molecular features of glioma growth, as well as better define the extent of glioma infiltration for therapeutic purposes.


Bioorganic & Medicinal Chemistry Letters | 2014

Facile synthesis of SSR180575 and discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[18F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide, a potent pyridazinoindole ligand for PET imaging of TSPO in cancer

Yiu-Yin Cheung; Michael L. Nickels; Dewei Tang; Jason R. Buck; H. Charles Manning

A novel synthesis of the translocator protein (TSPO) ligand 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575, 3) was achieved in four steps from commercially available starting materials. Focused structure-activity relationship development about the pyridazinoindole ring at the N3 position led to the discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (14), a novel ligand of comparable affinity. Radiolabeling with fluorine-18 ((18)F) yielded 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[(18)F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide ([(18)F]-14) in high radiochemical yield and specific activity. In vivo studies of [(18)F]-14 revealed this agent as a promising probe for molecular imaging of glioma.

Collaboration


Dive into the Jason R. Buck's collaboration.

Top Co-Authors

Avatar

H. Charles Manning

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael L. Nickels

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eliot T. McKinley

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yiu-Yin Cheung

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Allie Fu

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar

M. N. Tantawy

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge