Jason R. Dwyer
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason R. Dwyer.
Nature | 2005
Michael L. Cowan; B. D. Bruner; Nils Huse; Jason R. Dwyer; B. Chugh; Erik T. J. Nibbering; Thomas Elsaesser; R. J. D. Miller
Many of the unusual properties of liquid water are attributed to its unique structure, comprised of a random and fluctuating three-dimensional network of hydrogen bonds that link the highly polar water molecules. One of the most direct probes of the dynamics of this network is the infrared spectrum of the OH stretching vibration, which reflects the distribution of hydrogen-bonded structures and the intermolecular forces controlling the structural dynamics of the liquid. Indeed, water dynamics has been studied in detail, most recently using multi-dimensional nonlinear infrared spectroscopy for acquiring structural and dynamical information on femtosecond timescales. But owing to technical difficulties, only OH stretching vibrations in D2O or OD vibrations in H2O could be monitored. Here we show that using a specially designed, ultrathin sample cell allows us to observe OH stretching vibrations in H2O. Under these fully resonant conditions, we observe hydrogen bond network dynamics more than one order of magnitude faster than seen in earlier studies that include an extremely fast sweep in the OH frequencies on a 50-fs timescale and an equally fast disappearance of the initial inhomogeneous distribution of sites. Our results highlight the efficiency of energy redistribution within the hydrogen-bonded network, and that liquid water essentially loses the memory of persistent correlations in its structure within 50 fs.
Journal of Applied Physics | 2002
Bradley J. Siwick; Jason R. Dwyer; Robert E. Jordan; R. J. Dwayne Miller
Time-resolved electron diffraction harbors great promise for resolving the fastest chemical processes with atomic level detail. The main obstacles to achieving this real-time view of a chemical reaction are associated with delivering short electron pulses with sufficient electron density to the sample. In this article, the propagation dynamics of femtosecond electron packets in the drift region of a photoelectron gun are investigated with an N-body numerical simulation and mean-field model. It is found that space-charge effects can broaden the electron pulse to many times its original length and generate many eV of kinetic energy bandwidth in only a few nanoseconds. There is excellent agreement between the N-body simulation and the mean-field model for both space-charge induced temporal and kinetic energy distribution broadening. The numerical simulation also shows that the redistribution of electrons inside the packet results in changes to the pulse envelope and the development of a spatially linear axia...
Philosophical Transactions of the Royal Society A | 2006
Jason R. Dwyer; Christoph T. Hebeisen; Ralph Ernstorfer; Maher Harb; Vatche B Deyirmenjian; Robert E. Jordan; R. J. Dwayne Miller
Femtosecond electron diffraction (FED) has the potential to directly observe transition state processes. The relevant motions for this barrier-crossing event occur on the hundred femtosecond time-scale. Recent advances in the development of high-flux electron pulse sources with the required time resolution and sensitivity to capture barrier-crossing processes are described in the context of attaining atomic level details of such structural dynamics—seeing chemical events as they occur. Initial work focused on the ordered-to-disordered phase transition of Al under strong driving conditions for which melting takes on nm or molecular scale dimensions. This work has been extended to Au, which clearly shows a separation in time-scales for lattice heating and melting. It also demonstrates that superheated face-centred cubic (FCC) metals melt through thermal mechanisms involving homogeneous nucleation to propagate the disordering process. A new concept exploiting electron–electron correlation is introduced for pulse characterization and determination of t=0 to within 100 fs as well as for spatial manipulation of the electron beam. Laser-based methods are shown to provide further improvements in time resolution with respect to pulse characterization, absolute t=0 determination, and the potential for electron acceleration to energies optimal for time-resolved diffraction.
ACS Nano | 2009
Vincent Tabard-Cossa; Matthew Wiggin; Dhruti Trivedi; Nahid N. Jetha; Jason R. Dwyer; Andre Marziali
Weak molecular interactions drive processes at the core of living systems, such as enzyme-substrate interactions, receptor-ligand binding, and nucleic acid replication. Single-molecule force spectroscopy is a remarkable tool for revealing molecular scale energy landscapes of noncovalent bonds, by exerting a mechanical force directly on an individual molecular complex and tracking its survival as a function of time and applied force. In principle, force spectroscopy methods can also be used for highly specific molecular recognition assays, by directly characterizing the strength of bonds between probe and target molecules. However, complexity and low throughput of conventional force spectroscopy techniques render such biosensing applications impractical. Here we demonstrate a straightforward single-molecule approach, suitable for both biophysical studies and molecular recognition assays, in which a approximately 3 nm silicon nitride nanopore is used to determine the bond lifetime spectrum of the biotin-neutravidin complex. Thousands of individual molecular complexes are captured and dissociated in the solid-state nanopore under constant applied forces, ranging from 400 to 900 mV, allowing us to extract the location of the energy barrier that governs the interaction, mapped at Deltax approximately 0.5 nm. These results highlight the capacity of a solid-state nanopore to detect and characterize intermolecular interactions and demonstrate how this could be applied to rapid, highly specific molecular detection assays.
Journal of Physical Chemistry B | 2008
Jason R. Dwyer; Łukasz Szyc; Erik T. J. Nibbering; Thomas Elsaesser
N-H stretching excitations of DNA oligomers containing 23 alternating adenine-thymine base pairs are studied in femtosecond two-color pump-probe experiments. For a DNA film in a zero relative humidity atmosphere, transient vibrational spectra and their time evolution up to 10 ps demonstrate negligible spectral diffusion and allow for discerning different N-H stretching bands and the O-H stretching absorption of residual water molecules. Lifetimes on the order of 0.5 ps are found for both N-H and O-H stretching modes. The time-dependent pump-probe anisotropies of the different N-H excitations point to a pronounced coupling among them, whereas the O-H stretching anisotropy remains essentially constant.
Journal of Modern Optics | 2007
Jason R. Dwyer; Robert E. Jordan; Christoph T. Hebeisen; Maher Harb; Ralph Ernstorfer; Thibault Dartigalongue; R. J. Dwayne Miller
Femtosecond electron diffraction (FED) is a new technique within the still-developing field of ultrafast diffraction. This paper presents an outline of the basic features of FED, including a brief history of its development in terms of the technical challenges of working with femtosecond electron pulses and the ultrathin samples required. Application of FED to melting in aluminium and gold excited by intense femtosecond laser pulses will be discussed. The interplay of experiment and theory will be explored, particularly with respect to molecular dynamics simulations of the same processes we experimentally observe. Homogeneous nucleation emerges as an important melting mechanism under the strongly-driving conditions that we employ. Future applications of FED will be discussed in terms of progress to date.
ACS Applied Materials & Interfaces | 2014
Julie C. Whelan; Buddini Iroshika Karawdeniya; Y. M. Nuwan D. Y. Bandara; Brian D. Velleco; Caitlin M. Masterson; Jason R. Dwyer
A method to directly electrolessly plate silicon-rich silicon nitride with thin gold films was developed and characterized. Films with thicknesses <100 nm were grown at 3 and 10 °C between 0.5 and 3 h, with mean grain sizes between ∼20 and 30 nm. The method is compatible with plating free-standing ultrathin silicon nitride membranes, and we successfully plated the interior walls of micropore arrays in 200 nm thick silicon nitride membranes. The method is thus amenable to coating planar, curved, and line-of-sight-obscured silicon nitride surfaces.
Journal of Modern Optics | 2007
Jason R. Dwyer; Robert E. Jordan; Christoph T. Hebeisen; Maher Harb; Ralph Ernstorfer; Thibault Dartigalongue; R. J. Dwayne Miller
This paper provides a practical introduction to the current practice of femtosecond electron diffraction. We emphasize a general implementation suitable for a wide class of photoactive samples, including nonreversible samples. High density femtosecond electron pulses are required and the consequences for diffractometer design and sample preparation and handling are discussed. Finally, the real space structural analysis of strongly-driven melting in metals possible with our implementation is outlined.
Journal of Applied Physics | 2003
Bradley J. Siwick; Jason R. Dwyer; Robert E. Jordan; R. J. Dwayne Miller
In this reply, we address the main issues raised by Qian et al. regarding our recent article [J. Appl. Phys. 92, 1643 (2002)]. In particular, we reiterate the approximations used in the development of the mean-field model and demonstrate how the form used for the on-axis potential is applicable to the study of femtosecond electron packet propagation and is not in need of correction. We also repeat our assertion that the one-dimensional (1-D) fluid model developed by Qian et al. [J. Appl. Phys. 91, 462 (2002)] overestimates space-charge-induced pulse broadening and is in qualitative disagreement with femtosecond electron packet propagation dynamics. The key differences between the mean-field and 1-D fluid model are discussed and their range of applicability is clarified.
ACS Applied Materials & Interfaces | 2013
Cameron M. Frament; Nuwan Bandara; Jason R. Dwyer
The performance of nanopore single-molecule sensing elements depends intimately on their physical dimensions and surface chemical properties. These factors underpin the dependence of the nanopore ionic conductance on electrolyte concentration, yet the measured, or modeled, dependence only partially illuminates the details of geometry and surface chemistry. Using the electrolyte-dependent conductance data before and after selective surface functionalization of solid-state nanopores, however, introduces more degrees of freedom and improves the performance of conductance-based nanopore characterizations. Sets of representative nanopore profiles were used to generate conductance data, and the nanopore shape and exact dimensions were identified, through conductance alone, by orders-of-magnitude reductions in the geometry optimization metrics. The optimization framework could similarly be used to evaluate the nanopore surface coating thickness.