Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Roszik is active.

Publication


Featured researches published by Jason Roszik.


Cancer Discovery | 2016

Loss of PTEN promotes resistance to T cell–mediated immunotherapy

Weiyi Peng; Jie Qing Chen; Chengwen Liu; Shruti Malu; Caitlin Creasy; Michael T. Tetzlaff; Chunyu Xu; Jodi A. McKenzie; Chunlei Zhang; Xiaoxuan Liang; Leila Williams; Wanleng Deng; Guo Chen; Rina M. Mbofung; Alexander J. Lazar; Carlos A. Torres-Cabala; Zachary A. Cooper; Pei-Ling Chen; Trang Tieu; Stefani Spranger; Xiaoxing Yu; Chantale Bernatchez; Marie-Andree Forget; Cara Haymaker; Rodabe N. Amaria; Jennifer L. McQuade; Isabella C. Glitza; Tina Cascone; Haiyan S. Li; Lawrence N. Kwong

UNLABELLED T cell-mediated immunotherapies are promising cancer treatments. However, most patients still fail to respond to these therapies. The molecular determinants of immune resistance are poorly understood. We show that loss of PTEN in tumor cells in preclinical models of melanoma inhibits T cell-mediated tumor killing and decreases T-cell trafficking into tumors. In patients, PTEN loss correlates with decreased T-cell infiltration at tumor sites, reduced likelihood of successful T-cell expansion from resected tumors, and inferior outcomes with PD-1 inhibitor therapy. PTEN loss in tumor cells increased the expression of immunosuppressive cytokines, resulting in decreased T-cell infiltration in tumors, and inhibited autophagy, which decreased T cell-mediated cell death. Treatment with a selective PI3Kβ inhibitor improved the efficacy of both anti-PD-1 and anti-CTLA-4 antibodies in murine models. Together, these findings demonstrate that PTEN loss promotes immune resistance and support the rationale to explore combinations of immunotherapies and PI3K-AKT pathway inhibitors. SIGNIFICANCE This study adds to the growing evidence that oncogenic pathways in tumors can promote resistance to the antitumor immune response. As PTEN loss and PI3K-AKT pathway activation occur in multiple tumor types, the results support the rationale to further evaluate combinatorial strategies targeting the PI3K-AKT pathway to increase the efficacy of immunotherapy.


Cancer Cell | 2015

The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers

Leng Han; Lixia Diao; Shuangxing Yu; Xiaoyan Xu; Jie Li; Rui Zhang; Yang Yang; Henrica Maria Johanna Werner; A. Karina Eterovic; Yuan Yuan; Jun Li; Nikitha Nair; Rosalba Minelli; Yiu Huen Tsang; Lydia W.T. Cheung; Kang Jin Jeong; Jason Roszik; Zhenlin Ju; Scott E. Woodman; Yiling Lu; Kenneth L. Scott; Jin Billy Li; Gordon B. Mills; Han Liang

Adenosine-to-inosine (A-to-I) RNA editing is a widespread post-transcriptional mechanism, but its genomic landscape and clinical relevance in cancer have not been investigated systematically. We characterized the global A-to-I RNA editing profiles of 6,236 patient samples of 17 cancer types from The Cancer Genome Atlas and revealed a striking diversity of altered RNA-editing patterns in tumors relative to normal tissues. We identified an appreciable number of clinically relevant editing events, many of which are in noncoding regions. We experimentally demonstrated the effects of several cross-tumor nonsynonymous RNA editing events on cell viability and provide the evidence that RNA editing could selectively affect drug sensitivity. These results highlight RNA editing as an exciting theme for investigating cancer mechanisms, biomarkers, and treatments.


Science Translational Medicine | 2017

Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance

Whijae Roh; Pei Ling Chen; Alexandre Reuben; Christine N. Spencer; Peter A. Prieto; John P. Miller; Vancheswaran Gopalakrishnan; Feng Wang; Zachary A. Cooper; Sangeetha M. Reddy; Curtis Gumbs; Latasha Little; Qing Chang; Wei Shen Chen; Khalida Wani; Mariana Petaccia de Macedo; Eveline Chen; Jacob Austin-Breneman; Hong Jiang; Jason Roszik; Michael T. Tetzlaff; Michael A. Davies; Jeffrey E. Gershenwald; Hussein Abdul-Hassan Tawbi; Alexander J. Lazar; Patrick Hwu; Wen-Jen Hwu; Adi Diab; Isabella C. Glitza; Sapna Pradyuman Patel

Profiling of melanoma patients treated with checkpoint blockade reveals TCR clonality and copy number loss as correlates of therapeutic response. Checking on checkpoint inhibitors Immune checkpoint blockade has greatly improved the success of treatment in melanoma and other tumor types, but it is expensive and does not work for all patients. To optimize the likelihood of therapeutic success and reduce the risks and expense of unnecessary treatment, it would be helpful to find biomarkers that can predict treatment response. Roh et al. studied patients treated with sequential checkpoint inhibitors targeting CTLA-4 and then PD-1. In these patients, the authors discovered that a more clonal T cell population specifically correlates with response to PD-1 blockade, but not CTLA-4, which may help identify the best candidates for this treatment. In addition, increased frequency of gene copy number loss was correlated with decreased responsiveness to either therapy. Immune checkpoint blockade produces clinical benefit in many patients. However, better biomarkers of response are still needed, and mechanisms of resistance remain incompletely understood. To address this, we recently studied a cohort of melanoma patients treated with sequential checkpoint blockade against cytotoxic T lymphocyte antigen–4 (CTLA-4) followed by programmed death receptor–1 (PD-1) and identified immune markers of response and resistance. Building on these studies, we performed deep molecular profiling including T cell receptor sequencing and whole-exome sequencing within the same cohort and demonstrated that a more clonal T cell repertoire was predictive of response to PD-1 but not CTLA-4 blockade. Analysis of CNAs identified a higher burden of copy number loss in nonresponders to CTLA-4 and PD-1 blockade and found that it was associated with decreased expression of genes in immune-related pathways. The effect of mutational load and burden of copy number loss on response was nonredundant, suggesting the potential utility of a combinatorial biomarker to optimize patient care with checkpoint blockade therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection

Pappanaicken R. Kumaresan; Pallavi R. Manuri; Nathaniel D. Albert; Sourindra Maiti; Harjeet Singh; Tiejuan Mi; Jason Roszik; Brian Rabinovich; Simon Olivares; Janani Krishnamurthy; Ling Zhang; Amer Najjar; M. Helen Huls; Dean A. Lee; Richard E. Champlin; Dimitrios P. Kontoyiannis; Laurence J.N. Cooper

Significance Patients with compromised T-cell function are at risk for opportunistic fungal infections. We have developed a novel approach to restore immunity by using a fungal pattern-recognition receptor Dectin-1 to redirect T-cell specificity to carbohydrate antigen in the fungal cell wall. We did so by genetically modifying T cells using the nonviral Sleeping Beauty gene-transfer system to enforce expression of a chimeric antigen receptor (CAR) that recapitulates the specificity of Dectin-1 (D-CAR). The D-CAR+ T cells can be electroporated and propagated on artificial activating and propagating cells in a manner suitable for human application, enabling this immunology to be translated into immunotherapy. This approach has implications for genetically modifying T cells to express CARs with specificity for carbohydrate and thus broadening their application in the investigational treatment of pathogens and malignancies. Clinical-grade T cells are genetically modified ex vivo to express chimeric antigen receptors (CARs) to redirect their specificity to target tumor-associated antigens in vivo. We now have developed this molecular strategy to render cytotoxic T cells specific for fungi. We adapted the pattern-recognition receptor Dectin-1 to activate T cells via chimeric CD28 and CD3-ζ (designated “D-CAR”) upon binding with carbohydrate in the cell wall of Aspergillus germlings. T cells genetically modified with the Sleeping Beauty system to express D-CAR stably were propagated selectively on artificial activating and propagating cells using an approach similar to that approved by the Food and Drug Administration for manufacturing CD19-specific CAR+ T cells for clinical trials. The D-CAR+ T cells exhibited specificity for β-glucan which led to damage and inhibition of hyphal growth of Aspergillus in vitro and in vivo. Treatment of D-CAR+ T cells with steroids did not compromise antifungal activity significantly. These data support the targeting of carbohydrate antigens by CAR+ T cells and provide a clinically appealing strategy to enhance immunity for opportunistic fungal infections using T-cell gene therapy.


Cell Reports | 2017

Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

Farshad Farshidfar; Siyuan Zheng; Marie-Claude Gingras; Yulia Newton; Juliann Shih; A. Gordon Robertson; Toshinori Hinoue; Katherine A. Hoadley; Ewan A. Gibb; Jason Roszik; Kyle Covington; Chia Chin Wu; Eve Shinbrot; Nicolas Stransky; Apurva M. Hegde; Ju Dong Yang; Ed Reznik; Sara Sadeghi; Chandra Sekhar Pedamallu; Akinyemi I. Ojesina; Julian Hess; J. Todd Auman; Suhn Kyong Rhie; Reanne Bowlby; Mitesh J. Borad; Andrew X. Zhu; Josh Stuart; Chris Sander; Rehan Akbani; Andrew D. Cherniack

Summary Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.


BMC Medicine | 2016

Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set

Jason Roszik; Lauren E. Haydu; Kenneth R. Hess; Junna Oba; Aron Joon; Alan Siroy; Tatiana Karpinets; Francesco C. Stingo; Veera Baladandayuthapani; Michael T. Tetzlaff; Jennifer A. Wargo; Ken Chen; Marie Andrée Forget; Cara Haymaker; Jie Qing Chen; Funda Meric-Bernstam; Agda Karina Eterovic; Kenna R. Shaw; Gordon B. Mills; Jeffrey E. Gershenwald; Laszlo Radvanyi; Patrick Hwu; P. Andrew Futreal; Don L. Gibbons; Alexander J. Lazar; Chantale Bernatchez; Michael A. Davies; Scott E. Woodman

BackgroundWhile clinical outcomes following immunotherapy have shown an association with tumor mutation load using whole exome sequencing (WES), its clinical applicability is currently limited by cost and bioinformatics requirements.MethodsWe developed a method to accurately derive the predicted total mutation load (PTML) within individual tumors from a small set of genes that can be used in clinical next generation sequencing (NGS) panels. PTML was derived from the actual total mutation load (ATML) of 575 distinct melanoma and lung cancer samples and validated using independent melanoma (n = 312) and lung cancer (n = 217) cohorts. The correlation of PTML status with clinical outcome, following distinct immunotherapies, was assessed using the Kaplan–Meier method.ResultsPTML (derived from 170 genes) was highly correlated with ATML in cutaneous melanoma and lung adenocarcinoma validation cohorts (R2 = 0.73 and R2 = 0.82, respectively). PTML was strongly associated with clinical outcome to ipilimumab (anti-CTLA-4, three cohorts) and adoptive T-cell therapy (1 cohort) clinical outcome in melanoma. Clinical benefit from pembrolizumab (anti-PD-1) in lung cancer was also shown to significantly correlate with PTML status (log rank P value < 0.05 in all cohorts).ConclusionsThe approach of using small NGS gene panels, already applied to guide employment of targeted therapies, may have utility in the personalized use of immunotherapy in cancer.


Scientific Reports | 2016

Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma

Peter Bailey; David K. Chang; Marie Andrée Forget; Francis A.San Lucas; Hector A. Alvarez; Cara Haymaker; Chandrani Chattopadhyay; Sun Hee Kim; Suhendan Ekmekcioglu; Elizabeth A. Grimm; Andrew V. Biankin; Patrick Hwu; Anirban Maitra; Jason Roszik

Immunotherapy approaches for pancreatic ductal adenocarcinoma (PDAC) have met with limited success. It has been postulated that a low mutation load may lead to a paucity of T cells within the tumor microenvironment (TME). However, it is also possible that while neoantigens are present, an effective immune response cannot be generated due to an immune suppressive TME. To discern whether targetable neoantigens exist in PDAC, we performed a comprehensive study using genomic profiles of 221 PDAC cases extracted from public databases. Our findings reveal that: (a) nearly all PDAC samples harbor potentially targetable neoantigens; (b) T cells are present but generally show a reduced activation signature; and (c) markers of efficient antigen presentation are associated with a reduced signature of markers characterizing cytotoxic T cells. These findings suggest that despite the presence of tumor specific neoepitopes, T cell activation is actively suppressed in PDAC. Further, we identify iNOS as a potential mediator of immune suppression that might be actionable using pharmacological avenues.


Cancer Cell | 2017

mTORC2 Promotes Tumorigenesis via Lipid Synthesis

Yakir Guri; Marco Colombi; Eva Dazert; Sravanth K. Hindupur; Jason Roszik; Suzette Moes; Paul Jenoe; Markus H. Heim; Isabelle Riezman; Howard Riezman; Michael N. Hall

Dysregulated mammalian target of rapamycin (mTOR) promotes cancer, but underlying mechanisms are poorly understood. We describe an mTOR-driven mouse model that displays hepatosteatosis progressing to hepatocellular carcinoma (HCC). Longitudinal proteomic, lipidomics, and metabolomic analyses revealed that hepatic mTORC2 promotes de novo fatty acid and lipid synthesis, leading to steatosis and tumor development. In particular, mTORC2 stimulated sphingolipid (glucosylceramide) and glycerophospholipid (cardiolipin) synthesis. Inhibition of fatty acid or sphingolipid synthesis prevented tumor development, indicating a causal effect in tumorigenesis. Increased levels of cardiolipin were associated with tubular mitochondria and enhanced oxidative phosphorylation. Furthermore, increased lipogenesis correlated with elevated mTORC2 activity and HCC in human patients. Thus, mTORC2 promotes cancer via formation of lipids essential for growth and energy production.


npj Genomic Medicine | 2017

Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma

Alexandre Reuben; Christine N. Spencer; Peter A. Prieto; Vancheswaran Gopalakrishnan; Sangeetha M. Reddy; John P. Miller; Xizeng Mao; Mariana Petaccia de Macedo; Jiong Chen; Xingzhi Song; Hong Jiang; Pei Ling Chen; Hannah C. Beird; Haven R. Garber; Whijae Roh; Khalida Wani; Eveline Chen; Cara Haymaker; Marie Andrée Forget; Latasha Little; Curtis Gumbs; Rebecca Thornton; Courtney W. Hudgens; Wei Shen Chen; Jacob Austin-Breneman; Robert Sloane; Luigi Nezi; Alexandria P. Cogdill; Chantale Bernatchez; Jason Roszik

Appreciation for genomic and immune heterogeneity in cancer has grown though the relationship of these factors to treatment response has not been thoroughly elucidated. To better understand this, we studied a large cohort of melanoma patients treated with targeted therapy or immune checkpoint blockade (n = 60). Heterogeneity in therapeutic responses via radiologic assessment was observed in the majority of patients. Synchronous melanoma metastases were analyzed via deep genomic and immune profiling, and revealed substantial genomic and immune heterogeneity in all patients studied, with considerable diversity in T cell frequency, and few shared T cell clones (<8% on average) across the cohort. Variables related to treatment response were identified via these approaches and through novel radiomic assessment. These data yield insight into differential therapeutic responses to targeted therapy and immune checkpoint blockade in melanoma, and have key translational implications in the age of precision medicine.Melanoma: Tumor differences within a patient may explain heterogeneous responsesPatients with metastatic melanoma display molecular and immune differences across tumor sites associated with differential drug responses. A team led by Jennifer Wargo from the University of Texas MD Anderson Cancer Center, Houston, USA, studied the radiological responses of 60 patients with metastatic melanoma, half of whom received targeted drug therapy and half of whom received an immune checkpoint inhibitor. The majority (83%) showed differences in responses across metastases. The group then profiled tumors in a subset, and found molecular and immune heterogeneity in different tumors within the same patient. Heterogeneity in mutational and immune profiles within tumors from individual patients could explain differences in treatment response. Knowing this, the authors emphasize the importance of acquiring biopsies from more than one tumor site in order to best tailor therapies to the features of metastatic cancer.


Pigment Cell & Melanoma Research | 2015

Genetic analysis of the 'uveal melanoma' C918 cell line reveals atypical BRAF and common KRAS mutations and single tandem repeat profile identical to the cutaneous melanoma C8161 cell line

Xiaoxing Yu; Grazia Ambrosini; Jason Roszik; Agda Karina Eterovic; Katherine Stempke-Hale; Elisabeth A. Seftor; Chandrani Chattopadhyay; Elizabeth A. Grimm; Richard D. Carvajal; Mary J.C. Hendrix; F. Stephen Hodi; Gary K. Schwartz; Scott E. Woodman

To take out a personal subscription, please click here More information about Pigment Cell & Melanoma Research at www.pigment.org Genetic analysis of the ‘uveal melanoma’ C918 cell line reveals atypical BRAF and common KRAS mutations and single tandem repeat profile identical to the cutaneous melanoma C8161 cell line Xiaoxing Yu, Grazia Ambrosini, Jason Roszik, Agda Karina Eterovic, Katherine Stempke-Hale, Elisabeth A. Seftor, Chandrani Chattopadhyay, Elizabeth Grimm, Richard D. Carvajal, Mary J. C. Hendrix, F. Stephen Hodi, Gary K. Schwartz and Scott E. Woodman

Collaboration


Dive into the Jason Roszik's collaboration.

Top Co-Authors

Avatar

Patrick Hwu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Scott E. Woodman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alexander J. Lazar

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chantale Bernatchez

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Grimm

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Cara Haymaker

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael T. Tetzlaff

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rodabe N. Amaria

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Suhendan Ekmekcioglu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Vivek Subbiah

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge