Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Ryan is active.

Publication


Featured researches published by Jason Ryan.


International Journal of Systematic and Evolutionary Microbiology | 2011

Chthonomonas calidirosea gen. nov., sp. nov., an aerobic, pigmented, thermophilic micro-organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10.

Kevin C. Lee; Peter F. Dunfield; Xochitl C. Morgan; Michelle A. Crowe; Karen M. Houghton; Mikhail Vyssotski; Jason Ryan; Kirill Lagutin; Ian R. McDonald; Matthew B. Stott

An aerobic, saccharolytic, obligately thermophilic, motile, non-spore-forming bacterium, strain T49(T), was isolated from geothermally heated soil at Hells Gate, Tikitere, New Zealand. On the basis of 16S rRNA gene sequence similarity, T49(T) is the first representative of a new class in the newly described phylum Armatimonadetes, formerly known as candidate division OP10. Cells of strain T49(T) stained Gram-negative and were catalase-positive and oxidase-negative. Cells possessed a highly corrugated outer membrane. The major fatty acids were 16 : 0, i17 : 0 and ai17 : 0. The G+C content of the genomic DNA was 54.6 mol%. Strain T49(T) grew at 50-73 °C with an optimum temperature of 68 °C, and at pH 4.7-5.8 with an optimum growth pH of 5.3. A growth rate of 0.012 h(-1) was observed under optimal temperature and pH conditions. The primary respiratory quinone was MK-8. Optimal growth was achieved in the absence of NaCl, although growth was observed at NaCl concentrations as high as 2 % (w/v). Strain T49(T) was able to utilize mono- and disaccharides such as cellobiose, lactose, mannose and glucose, as well as branched or amorphous polysaccharides such as starch, CM-cellulose, xylan and glycogen, but not highly linear polysaccharides such as crystalline cellulose or cotton. On the basis of its phylogenetic position and phenotypic characteristics, we propose that strain T49(T) represents a novel bacterial genus and species within the new class Chthonomonadetes classis nov. of the phylum Armatimonadetes. The type strain of Chthonomonas calidirosea gen. nov., sp. nov. is T49(T) ( = DSM 23976(T) = ICMP 18418(T)).


PLOS ONE | 2014

Marinobacter salarius sp. nov. and Marinobacter similis sp. nov., isolated from sea water.

Hooi Jun Ng; Mario López-Pérez; Hayden K. Webb; Daniela Gomez; Tomoo Sawabe; Jason Ryan; Mikhail Vyssotski; Chantal Bizet; Francois Malherbe; Valery V. Mikhailov; Russell J. Crawford; Elena P. Ivanova

Two non-pigmented, motile, Gram-negative marine bacteria designated R9SW1T and A3d10T were isolated from sea water samples collected from Chazhma Bay, Gulf of Peter the Great, Sea of Japan, Pacific Ocean, Russia and St. Kilda Beach, Port Phillip Bay, the Tasman Sea, Pacific Ocean, respectively. Both organisms were found to grow between 4°C and 40°C, between pH 6 to 9, and are moderately halophilic, tolerating up to 20% (w/v) NaCl. Both strains were found to be able to degrade Tween 40 and 80, but only strain R9SW1T was found to be able to degrade starch. The major fatty acids were characteristic for the genus Marinobacter including C16:0, C16:1 ω7c, C18:1 ω9c and C18:1 ω7c. The G+C content of the DNA for strains R9SW1T and A3d10T were determined to be 57.1 mol% and 57.6 mol%, respectively. The two new strains share 97.6% of their 16S rRNA gene sequences, with 82.3% similarity in the average nucleotide identity (ANI), 19.8% similarity in the in silico genome-to-genome distance (GGD), 68.1% similarity in the average amino acid identity (AAI) of all conserved protein-coding genes, and 31 of the Karlins genomic signature dissimilarity. A phylogenetic analysis showed that R9SW1T clusters with M. algicola DG893T sharing 99.40%, and A3d10T clusters with M. sediminum R65T sharing 99.53% of 16S rRNA gene sequence similarities. The results of the genomic and polyphasic taxonomic study, including genomic, genetic, phenotypic, chemotaxonomic and phylogenetic analyses based on the 16S rRNA, gyrB and rpoD gene sequence similarities, the analysis of the protein profiles generated using MALDI-TOF mass spectrometry, and DNA-DNA relatedness data, indicated that strains R9SW1T and A3d10T represent two novel species of the genus Marinobacter. The names Marinobacter salarius sp. nov., with the type strain R9SW1T ( =  LMG 27497T  =  JCM 19399T  =  CIP 110588T  =  KMM 7502T) and Marinobacter similis sp. nov., with the type strain A3d10T ( =  JCM 19398T  =  CIP 110589T  =  KMM 7501T), are proposed.


Carbohydrate Research | 2012

Isolation and structural characterisation of the major glycolipids from Lactobacillus plantarum

Janelle Sauvageau; Jason Ryan; Kirill Lagutin; Ian M. Sims; Bridget L. Stocker; Mattie S. M. Timmer

To date, the structures of the glycolipids from Lactobacillus plantarum, a commonly used beneficial probiotic, have not been conclusively assigned. Herein, we report for the first time, the full characterisation of the four principal glycolipids of the L. plantarum cell wall using sugar, linkage and FAME analysis, as well as ESI-MS/MS and 1D- and 2D-NMR spectroscopy, and assign the major glycolipids as being: α-D-Glcp-diglyceride, α-D-Galp-(1→2)-α-D-Glcp-diglyceride, β-D-Glcp-(1→6)-α-D-Galp-(1→2)-6-O-acyl-α-D-Glcp-diglyceride and β-D-Glcp-(1→6)-α-D-Galp-(1→2)-α-D-Glcp-diglyceride.


International Journal of Systematic and Evolutionary Microbiology | 2014

Paenibacillus darwinianus sp. nov., isolated from gamma-irradiated Antarctic soil.

Melissa Dsouza; Michael W. Taylor; Jason Ryan; Andrew MacKenzie; Kirill Lagutin; Robert F. Anderson; Susan J. Turner; Jackie Aislabie

A novel bacterium, strain Br(T), was isolated from gamma-irradiated soils of the Britannia drift, Lake Wellman Region, Antarctica. This isolate was rod-shaped, endospore forming, Gram-stain-variable, catalase-positive, oxidase-negative and strictly aerobic. Cells possessed a monotrichous flagellum. Optimal growth was observed at 18 °C, pH 7.0 in PYGV or R2A broth. The major cellular fatty acid was anteiso-C15 : 0 (63.4 %). Primary identified lipids included phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. Total phospholipid was 60 % (w/w) of the total lipid extract. MK-7 was the dominant isoprenoid quinone. The genomic DNA G+C content was 55.6 mol%. Based on 16S rRNA gene sequence similarity, strain Br(T) clusters within the genus Paenibacillus with similarity values ranging from 93.9 to 95.1 %. Phylogenetic analyses by maximum-likelihood, maximum-parsimony and neighbour-joining methods revealed that strain Br(T) clusters with Paenibacillus daejeonensis (AF290916), Paenibacillus tarimensis (EF125184) and Paenibacillus pinihumi (GQ423057), albeit with weak bootstrap support. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, we propose that strain Br(T) represents a novel species, Paenibacillus darwinianus sp. nov. The type strain is Br(T) ( = DSM 27245(T) = ICMP 19912(T)).


Lipids | 2012

A Novel Fatty Acid, 12,17-Dimethyloctadecanoic Acid, from the Extremophile Thermogemmatispora sp. (Strain T81)

Mikhail Vyssotski; Jason Ryan; Kirill Lagutin; H. Wong; Xochitl C. Morgan; Matthew B. Stott

The major fatty acids of a novel species of Thermogemmatispora sp. (strain T81) from the phylum Chloroflexi were identified as i18:0 (42.8 % of total fatty acids), i19:0 (9.7 %), and i17:0 (5.9 %). Also observed was a number of unidentified fatty acids, including a major acid (16.3 %) with ECL of 19.04 (BP1), and 18.76 (TG-WAXMS A). GCMS revealed that this compound is a saturated 20-carbon atom fatty acid. 1H– and 13C–NMR, with 1H–1H–COSY and 1H–13C–HSQC experiments suggested the structure of dimethyl octadecanoic acid with iso-branching, and an extra middle-chain methyl group. A pyrrolidide derivative demonstrated the characteristic gaps in GCMS indicating methyl branching at C12 and C17, which was eventually confirmed by a 1H–13C–HSQC–TOCSY experiment. This 12,17-dimethyloctadecanoic acid has not been previously detected or described in these organisms. However, a recent description of a phylogenetically related species of Thermogemmatispora (Yabe et al., Int J Syst Evol Microbiol 61:903–910, 2010), noted an unidentified 20:0 fatty acid with matching GC behavior and GCMS data to that of strain T81. These data suggest that Thermogemmatispora share an ability to synthesize the same fatty acid. A number of other dimethyl-branched fatty acids, namely 8,14-diMe 15:0; 12,15-diMe 16:0; 10,15-diMe 16:0; 12,16-diMe 17:0; 10,16-diMe 17:0; 12,17-diMe 18:0; 12,18-diMe 19:0; 14,19-diMe 20:0, were also identified in strain T81.


International Journal of Systematic and Evolutionary Microbiology | 2014

Thermoflavifilum aggregans gen. nov., sp. nov., a thermophilic and slightly halophilic filamentous bacterium from the phylum Bacteroidetes.

Heike Anders; Peter F. Dunfield; Kirill Lagutin; Karen M. Houghton; Jean F. Power; Andrew MacKenzie; Mikhail Vyssotski; Jason Ryan; Eric Hanssen; John W. Moreau; Matthew B. Stott

A strictly aerobic, thermophilic, moderately acidophilic, non-spore-forming bacterium, strain P373(T), was isolated from geothermally heated soil at Waikite, New Zealand. Cells were filamentous rods, 0.2-0.4 µm in diameter and grew in chains up to 80 µm in length. On the basis of 16S rRNA gene sequence similarity, strain P373(T) was shown to belong to the family Chitinophagaceae (class Sphingobacteriia) of the phylum Bacteroidetes, with the most closely related cultivated strain, Chitinophaga pinensis UQM 2034(T), having 87.6 % sequence similarity. Cells stained Gram-negative, and were catalase- and oxidase-positive. The major fatty acids were i-15 : 0 (10.8 %), i-17 : 0 (24.5 %) and i-17 : 0 3-OH (35.2 %). Primary lipids were phosphatidylethanolamine, two unidentified aminolipids and three other unidentified polar lipids. The presence of sulfonolipids (N-acyl-capnines) was observed in the total lipid extract by mass spectrometry. The G+C content of the genomic DNA was 47.3 mol% and the primary respiratory quinone was MK-7. Strain P373(T) grew at 35-63 °C with an optimum temperature of 60 °C, and at pH 5.5-8.7 with an optimum growth pH of 7.3-7.4. NaCl tolerance was up to 5 % (w/v) with an optimum of 0.1-0.25 % (w/v). Cell colonies were non-translucent and pigmented vivid yellow-orange. Cells displayed an oxidative chemoheterotrophic metabolism. The distinct phylogenetic position and the phenotypic characteristics separate strain P373(T) from all other members of the phylum Bacteroidetes and indicate that it represents a novel species in a new genus, for which the name Thermoflavifilum aggregans gen. nov., sp. nov. is proposed. The type strain of the type species is P373(T) ( = ICMP 20041(T) = DSM 27268(T)).


Journal of Natural Products | 2013

Cyclic 3-alkyl pyridinium alkaloid monomers from a New Zealand Haliclona sp. marine sponge.

Vidhiya Damodaran; Jason Ryan; Robert A. Keyzers

Bioassay and NMR approaches have been used to guide the isolation of one known and two new cyclic 3-alkyl pyridinium alkaloid (3-APA) monomers from the New Zealand marine sponge Haliclona sp. The new compounds, dehydrohaliclocyclins C (3) and F (4), are the first reported examples of cyclic 3-APA monomers with unsaturation in the alkyl chain. The known compound haliclocyclin C (2) was also isolated from a mixture with 4. The structures of compounds 2-4 were elucidated using NMR spectroscopy, mass spectrometry, and chemical degradation.


Journal of Organic Chemistry | 2014

Discovery of Lipids from B. longum subsp. infantis using Whole Cell MALDI Analysis

Mattie S. M. Timmer; Janelle Sauvageau; Amy J. Foster; Jason Ryan; Kirill Lagutin; Odette Shaw; Jacquie L. Harper; Ian M. Sims; Bridget L. Stocker

Bifidobacteria are dominant members of the microbial community in the intestinal tract of infants, and studies have shown that glycolipids extracted from the cell surface of these bacteria elicit beneficial immune responses. Accordingly, the identification and structural characterization of glycolipids from the cell wall of bifidobacteria is the first step in correlating glycolipid structure with biological activity. Using whole cell MALDI as a screening tool, we herein present for the first time the identification and structural elucidation of the major polar lipids from Bifidobacterium longum subs. infantis. The lipids identified include an unprecedented plasmenyl cyclophosphatidic acid and a mixed acetal glycolipid, with the latter subsequently being isolated and found to suppress the innate immune response.


Bioorganic & Medicinal Chemistry Letters | 2016

Identification, library synthesis and anti-vibriosis activity of 2-benzyl-4-chlorophenol from cultures of the marine bacterium Shewanella halifaxensis

Sarah Moore; Lucile Berthomier; Chriselle D. Braganza; Joanna K. MacKichan; Jason Ryan; Gabriel Visnovsky; Robert A. Keyzers

Summer Gut Syndrome (SGS) is caused by various Vibrio bacterial species and can have negative effects on aquaculture farms worldwide. In New Zealand, SGS is caused by Vibrio harveyii infecting King Salmon (Oncorhynchus tshawytscha). To find leads for the prevention of SGS, we screened the inhibitory effects of 16 strains of Shewanella upon V. harveyii growth in competitive solid phase cultures. The detailed investigation of Shewanella halifaxensis IRL548 revealed 2-benzyl-4-chlorophenol (1), a known, commercially available antibacterial agent, as the major bioactive component. Synthesis of a small library of congeners to confirm the natural product identity and to provide a structure-activity relationship for the observed activity was also completed. Compound 1 exhibits moderate activity against two pathogenic microorganisms.


Journal of Supercritical Fluids | 2009

The extraction and fractionation of specialty lipids using near critical fluids

Owen J. Catchpole; Stephen Tallon; W.E. Eltringham; John Bertram Grey; Kristina Fenton; E.M. Vagi; Mikhail Vyssotski; A.N. MacKenzie; Jason Ryan; Y. Zhu

Collaboration


Dive into the Jason Ryan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Owen J. Catchpole

Industrial Research Limited

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian M. Sims

Industrial Research Limited

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena P. Ivanova

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hayden K. Webb

Swinburne University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge