Jason S. Olfert
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason S. Olfert.
Science | 2012
Christopher D. Cappa; Timothy B. Onasch; Paola Massoli; Douglas R. Worsnop; T. S. Bates; Eben S. Cross; P. Davidovits; Jani Hakala; K. Hayden; B. T. Jobson; Katheryn R. Kolesar; D. A. Lack; Shao-Meng Li; Daniel Mellon; I. Nuaaman; Jason S. Olfert; Tuukka Petäjä; Patricia K. Quinn; Chen Song; R. Subramanian; Eric J. Williams; Rahul A. Zaveri
Dark Forcing Soot, or black carbon, is a ubiquitous atmospheric pollutant whose warming effect might be second only to carbon dioxide. When black carbon is emitted, it combines with other aerosols to form heterogeneous mixtures. Models have predicted that internal mixing of black carbon with other materials can double the amount of radiation absorbed. Cappa et al. (p. 1078) report that in situ measurements of the enhancement of radiation absorption by these mixed black carbon–containing particles in the atmosphere show a much smaller effect. Thus, many climate models may be overestimating the amount of warming caused by black carbon emissions. Direct measurements show that ambient atmospheric particulate black carbon absorbs less solar radiation than theory suggested. Atmospheric black carbon (BC) warms Earth’s climate, and its reduction has been targeted for near-term climate change mitigation. Models that include forcing by BC assume internal mixing with non-BC aerosol components that enhance BC absorption, often by a factor of ~2; such model estimates have yet to be clearly validated through atmospheric observations. Here, direct in situ measurements of BC absorption enhancements (Eabs) and mixing state are reported for two California regions. The observed Eabs is small—6% on average at 532 nm—and increases weakly with photochemical aging. The Eabs is less than predicted from observationally constrained theoretical calculations, suggesting that many climate models may overestimate warming by BC. These ambient observations stand in contrast to laboratory measurements that show substantial Eabs for BC are possible.
Aerosol Science and Technology | 2010
Eben S. Cross; Timothy B. Onasch; Adam Ahern; William Wrobel; Jay G. Slowik; Jason S. Olfert; D. A. Lack; Paola Massoli; Christopher D. Cappa; Joshua P. Schwarz; J. Ryan Spackman; D. W. Fahey; Arthur J. Sedlacek; A. Trimborn; John T. Jayne; Andrew Freedman; Leah R. Williams; Nga L. Ng; Claudio Mazzoleni; Manvendra K. Dubey; Benjamin T. Brem; Greg Kok; R. Subramanian; Steffen Freitag; Antony D. Clarke; D. A. Thornhill; Linsey C. Marr; Charles E. Kolb; Douglas R. Worsnop; P. Davidovits
An inter-comparison study of instruments designed to measure the microphysical and optical properties of soot particles was completed. The following mass-based instruments were tested: Couette Centrifugal Particle Mass Analyzer (CPMA), Time-of-Flight Aerosol Mass Spectrometer—Scanning Mobility Particle Sizer (AMS-SMPS), Single Particle Soot Photometer (SP2), Soot Particle-Aerosol Mass Spectrometer (SP-AMS) and Photoelectric Aerosol Sensor (PAS2000CE). Optical instruments measured absorption (photoacoustic, interferometric, and filter-based), scattering (in situ), and extinction (light attenuation within an optical cavity). The study covered an experimental matrix consisting of 318 runs that systematically tested the performance of instruments across a range of parameters including: fuel equivalence ratio (1.8 ≤ φ ≤ 5), particle shape (mass-mobility exponent ( D fm ), 2.0 ≤ D fm ≤ 3.0), particle mobility size (30 ≤ d m ≤ 300 nm), black carbon mass (0.07 ≤ m BC ≤ 4.2 fg) and particle chemical composition. In selected runs, particles were coated with sulfuric acid or dioctyl sebacate (DOS) (0.5 ≤ Δ r ve ≤ 201 nm) where Δ r ve is the change in the volume equivalent radius due to the coating material. The effect of non-absorbing coatings on instrument response was determined. Changes in the morphology of fractal soot particles were monitored during coating and denuding processes and the effect of particle shape on instrument response was determined. The combination of optical and mass based measurements was used to determine the mass specific absorption coefficient for denuded soot particles. The single scattering albedo of the particles was also measured. An overview of the experiments and sample results are presented.
Aerosol Science and Technology | 2010
J. P. Schwarz; J. R. Spackman; R. S. Gao; A. E. Perring; Eilene S. Cross; Timothy B. Onasch; Alexander Ahern; William Wrobel; P. Davidovits; Jason S. Olfert; Manvendra K. Dubey; Claudio Mazzoleni; D. W. Fahey
A single particle soot photometer (SP2) uses an intense laser to heat individual aerosol particles of refractory black carbon (rBC) to vaporization, causing them to emit detectable amounts of thermal radiation that are used to quantify rBC mass. This approach is well suited for the detection of the majority of rBC mass loading in the ambient atmosphere, which occurs primarily in the accumulation mode (∼ 1–300 fg-rBC/particle). In addition to operator choices about instrument parameters, SP2 detection of rBC number and/or mass can be limited by the physical process inherent in the SP2 detection technique — namely at small rBC mass or low laser intensities, particles fail to heat to vaporization, a requirement for proper detection. In this study, the SP2s ability to correctly detect and count individual flame-generated soot particles was measured at different laser intensities for different rBC particle masses. The flame-generated soot aerosol used for testing was optionally prepared with coatings of organic and non-organic material and/or thermally denuded. These data are used to identify a minimum laser intensity for accurate detection at sea level of total rBC mass in the accumulation mode (300 nW/(220-nm PSL)), a minimum rBC mass (∼ 0.7-fg rBC-mass corresponding to 90 nm volume-equivalent diameter) for near-unity number detection efficiency with a typical operating laser intensity (450 nW/(220-nm PSL)), and a methodology using observed color temperature to recognize laser intensity insufficient for accurate rBC mass detection. Additionally, methods for measurement of laser intensity using either laboratory or ambient aerosol are presented.
Aerosol Science and Technology | 2013
R. Ghazi; Jason S. Olfert
Soot particles in the atmosphere can be coated with organic or nonorganic material, which may affect particle morphology and optical properties. The effect of the mass of coating on the morphology of soot particles was studied using oleic acid and dioctyl sebacate (DOS) coatings. A wide range of coatings were used, with up to 10 times as much coating as the mass of the soot. It is shown that as the coating mass increases the degree of collapsing increases until the coating is so large that the soot particle becomes completely contained within a spherical droplet of the coating material. Higher amounts of coating will not cause further collapse of the particle. The degree of collapse is also a function of the initial size of the soot particle but was independent of the coating materials tested, which have similar surface tensions. A model is presented to predict the change in mobility diameter as a function of coating mass ratio. The effect of coating mass on effective density, shape factor, and fractal dimension is also reported. Copyright 2013 American Association for Aerosol Research
Aerosol Science and Technology | 2013
Rouzbeh Ghazi; Hugo Tjong; Arka Soewono; Steven N. Rogak; Jason S. Olfert
Particle mass, mobility, volatile mass fraction, effective density, mass concentration, mass–mobility exponent, and particle morphology were measured from soot generated from a premixed flame (McKenna burner) and an inverted diffusion flame over a range of equivalence ratios. It was found that the mass fraction of volatile material on the soot from the McKenna burner could be up to 0.83 at a high equivalence ratio, but there was no measurable volatile material on the soot from the inverted burner. The inverted burner can produce soot at different mass–mobility exponents, ranging from 2.23 to 2.54, over a range of global equivalence ratios of 0.53–0.67, while the mass–mobility exponent ranges from 2.19 to 2.99 for fresh soot and 2.19 to 2.81 for denuded soot for the McKenna burner at equivalence ratios of 2.0–3.75. Transmission electron microscopy analysis of inverted burner soot shows that a range of particle morphologies is present at a given global equivalence ratio, likely due to different local equivalence ratios and flame conditions in the diffusion flame. Primary particle diameter tends to increase with aggregate size, which could contribute to the mass–mobility exponent being well above 2. Copyright 2013 American Association for Aerosol Research
Bulletin of the American Meteorological Society | 2009
Larry K. Berg; Carl M. Berkowitz; John A. Ogren; Chris A. Hostetler; Richard A. Ferrare; Manvendra K. Dubey; E. Andrews; Richard L. Coulter; Johnathan W. Hair; John M. Hubbe; Yin-Nan Lee; Claudio Mazzoleni; Jason S. Olfert; Stephen R. Springston
Abstract The primary goal of the Cumulus Humilis Aerosol Processing Study (CHAPS) was to characterize and contrast freshly emitted aerosols below, within, and above fields of cumuli, and to study changes to the cloud microphysical structure within these same cloud fields in the vicinity of Oklahoma City during June 2007. CHAPS is one of few studies that have had an aerosol mass spectrometer (AMS) sampling downstream of a counterflow virtual impactor (CVI) inlet on an aircraft, allowing the examination of the chemical composition of activated aerosols within the cumuli. The results from CHAPS provide insights into changes in the aerosol chemical and optical properties as aerosols move through shallow cumuli downwind of a moderately sized city. Three instrument platforms were employed during CHAPS, including the U.S. Department of Energy Gulfstream-1 aircraft, which was equipped for in situ sampling of aerosol optical and chemical properties; the NASA Langley King Air B200, which carried the downward-lookin...
Environmental Science & Technology | 2014
Elijah G. Schnitzler; Ashneil Dutt; André M. Charbonneau; Jason S. Olfert; Wolfgang Jäger
Restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor. Although significantly compacted, fully processed aggregates were not spherical, with a mass-mobility exponent of 2.78, so additional SOA was required to fill indentations between collapsed branches of the restructured aggregates before the dynamic shape factor of coated particles approached 1. Trends in diameter growth factor, effective density, and dynamic shape factor with increasing mass growth factor indicate distinct stages in soot aggregate processing by SOA coatings. The final degree and coating mass dependence of soot restructuring were found to be the same for SOA coatings from all four aromatic precursors, indicating that the surface tensions of the SOA coatings are similar.
Aerosol Science and Technology | 2015
Brian Graves; Jason S. Olfert; Bronson Patychuk; Ramin Dastanpour; Steven N. Rogak
The particulate matter (PM) emitted from a single-cylinder compression-ignition, natural-gas engine fitted with a High-Pressure Direct-Injection (HPDI) system distinctly different from a duel fuel engine was investigated, and characterized by size distribution, morphology, mass-mobility exponent, effective density, volatility, mixing state, and primary particle size using transmission electron microscopy (TEM), and tandem measurements from differential mobility analyzers (DMA) and a centrifugal particle mass analyzer (CPMA). Six engine conditions were selected with varying load, speed, exhaust gas recirculation (EGR) fraction, and fuel delivery strategy. An increase in engine load increased both the number concentration and the geometric mean diameter of the particulate. The fraction of the number of purely volatile particles to total number of particles (number volatile fraction, NVF) was found to decrease as load increased, although at the lower speed, partially premixed mode, the lowest NVF. All size distributions were also found to be unimodal. The size-segregated ratio of the mass of internally mixed volatile material to total particle mass (mass volatile fraction, MVF) decreased with load and with particle mobility-equivalent diameter. A roughly constant amount of volatile material is likely produced at each engine mode, and the decrease in MVF is due to the increase in PM number with load. Effective density and mass-mobility exponent of the non-volatile soot at the different engine loads were the same or slightly higher than soot from traditional diesel engines. Denuded effective density trends were observed to collapse to approximately the same line, although engine modes with higher MVFs had slightly higher effective densities suggesting that the soot structures have collapsed into more dense shapes—a suspicion that is confirmed with TEM images. TEM results also indicated that primary particle size first decreases from low to medium load, then increases from medium to high load. An increase in EGR was also seen to increase primary particle size. Coefficients were determined for a relation that gives primary particle diameter as a function of projected area equivalent diameter. A decrease in load or speed results in a stronger correlation. Copyright 2015 American Association for Aerosol Research
Aerosol Science and Technology | 2010
Laleh Golshahi; Warren H. Finlay; Jason S. Olfert; Richard B. Thompson; Michelle Noga
Experimentally measured deposition of ultrafine particles, ranging from 13–100 nm in diameter, in nasal airway replicas of ten infants aged 3–18 months is presented. The replicas included the face, nostrils, and nasal airways including the upper trachea. A differential mobility analyzer (DMA) and a condensation particle counter (CPC) were used to quantify the nasal deposition by comparing the number of polydisperse sodium chloride particles, generated by evaporation from a Collison atomizer, at the inlet and outlet of the replicas. Particles were individually classified in size by DMA and subsequently were counted one size bin at a time by CPC upstream and downstream of each replica. Since in vivo data is not available for infants to compare to, we validated our experimental procedure instead by comparing deposition in nasal airway replicas of six adults with in vivo measurements reported in literature. In the infant replicas, tidal inhalation was simulated at two physiologically compatible flow rates and the effect of flow rate on deposition was found to be small. Deposition obtained at constant flow rates is lower than with tidal breathing, indicating the importance of unsteadiness, in contrast to similar data in adults where unsteadiness is known to be unimportant. An empirical equation, containing geometrical features of the nasal airways in the form of related non-dimensional dynamical parameters (Reynolds, Schmidt, and Womersley numbers), was best fitted to the infant data. This equation may be useful for a priori prediction of nasal deposition and intersubject variability during exposure of infants to ultrafine aerosols.
Aerosol Science and Technology | 2013
Tyler J. Johnson; Jonathan P.R. Symonds; Jason S. Olfert
Mass–mobility measurements using a centrifugal particle mass analyzer (CPMA) and differential mobility spectrometer (DMS) are demonstrated. The CPMA, which classifies an aerosol by mass-to-charge ratio, is used upstream of a DMS, which measures the mobility size distribution of the mass-classified particles in real-time. This system allows for mass–mobility measurements to be made on transient sources at one particle mass or an entire effective density distribution for steady state sources in minutes. Since the CPMA classifies particles by mass-to-charge ratio and multiply charged particles are present, particles of several different masses will be measured by the DMS. Therefore, a correction scheme is required to make accurate measurements. To validate this measurement scheme, two different CPMA-DMS systems were used to measure the known density of di(2ethylhexyl) sebacate (DEHS). The first system consisted of a CPMA and standard DMS500 (Cambustion). This system measured an average effective density of 1027 kg/m3 or within 12.6% of the accepted value with an estimated uncertainty of 30.1% (with 95% confidence). The second system consisted of a CPMA and modified DMS. The modified DMS was a DMS500 with the corona charger disabled and sample and sheath flow rates lowered, decreasing the uncertainty in the mobility measurement. This system measured an average effective density of 964 kg/m3 or within 5.7% of the accepted value with an uncertainty of 9.5–10.4% depending on particle mobility size. Finally, it was determined that multiple-charge correction and size calibration were required, with each correction causing a maximum change in measured effective density greater than 10%. Copyright 2013 American Association for Aerosol Research