Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason S. Reed is active.

Publication


Featured researches published by Jason S. Reed.


Science | 2013

Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms

Scott G. Hansen; Jonah B. Sacha; Colette M. Hughes; Julia C. Ford; Benjamin J. Burwitz; Isabel Scholz; Roxanne M. Gilbride; Matthew S. Lewis; Awbrey N. Gilliam; Abigail B. Ventura; Daniel Malouli; Guangwu Xu; Rebecca Richards; Nathan Whizin; Jason S. Reed; Katherine B. Hammond; Miranda Fischer; John M. Turner; Alfred W. Legasse; Michael K. Axthelm; Paul T. Edlefsen; Jay A. Nelson; Jeffrey D. Lifson; Klaus Früh; Louis J. Picker

Introduction CD8+ T cell responses focus on a small fraction of total pathogen-encoded peptides, which are similar among individuals with shared major histocompatibility complex (MHC) alleles. This focus can limit immune control of genetically flexible pathogens, such as HIV and SIV, because CD8+ T cells in most infected subjects do not target sequences required for pathogen fitness, resulting in viral escape. Although a vaccine capable of broadening or redirecting CD8+ T cell epitope targeting to prevent viral escape would be highly advantageous, it remains unclear whether this targeting can be diverted from its default pattern during priming. Fibroblast-adapted RhCMV/gag vectors elicit MHC class II–restricted CD8+ T cells, greatly expanding the breadth of the response. (Top) Differential inhibition of SIVgag-specific CD8+ T cells from SIV+, fibroblast-adapted RhCMV/gag vector–vaccinated, and tropism-repaired RhCMV/gag vector–vaccinated rhesus macaques by MHC-I versus MHC-II blockade. (Bottom) Responses to consecutive SIVgag 15mer peptides in the indicated animals, classified by sensitivity to MHC-I versus MHC-II blockade. Methods We used intracellular cytokine analysis to compare the epitope targeting of SIV-specific CD8+ T cell responses in rhesus macaques with controlled SIV infection or after vaccination with either conventional SIV vaccines or rhesus cytomegalovirus (RhCMV) vectors. RhCMV vectors have been associated with stringent control of SIV challenge in the absence of protective MHC alleles. Results Fibroblast-adapted RhCMV/SIV vectors elicited SIV-specific CD8+ T cells that failed to target any canonical epitopes associated with SIV infection or conventional SIV vaccination. Instead, they recognized distinct epitopes characterized by extraordinary breadth (greater than that of conventional vaccines by a factor of >3), MHC class II (MHC-II) restriction (63% of epitopes), and high promiscuity (epitopes common to most or all responses in vaccinated macaques). These unconventionally targeted CD8+ T cell responses recognized autologous SIV-infected cells, indicating that processing and presentation of the unconventional epitopes is CMV-independent. However, CMV gene expression was responsible for directing epitope specificity of CD8+ T cells during priming. The induction of canonical SIV epitope–specific CD8+ T cell responses was specifically suppressed by expression of the Rh189/US11 gene, and the promiscuous MHC-I– and MHC-II–restricted CD8+ T cell responses occurred only in the absence of the Rh157.4–.6/UL128–131 genes involved in CMV tropism for nonfibroblasts. Discussion These findings suggest that CD8+ T cell recognition is more flexible than had been thought, and that the focused epitope recognition profiles of conventional CD8+ T cell responses may be primarily restricted by immunoregulation during priming (which can be subverted by CMV) rather than by intrinsic limitations in antigen processing/presentation or in T cell receptor repertoire. The ability of CMVs with different genetic modifications to differentially elicit CD8+ T cell responses with divergent patterns of epitope recognition raises the possibility of a CMV vector–based vaccine platform with programmable CD8+ T cell epitope targeting, including vectors that can selectively elicit CD8+ T cell responses targeting conventional or unconventional epitopes. Because the latter would be unaffected by escape mutations arising during natural infection, these vectors would be well suited for therapeutic vaccine applications. CMV Breaks All the Rules One vaccine strategy being pursued against HIV is to generate protection that is dependent on cell-mediated, rather than humoral, immune responses. A cytomegalovirus (CMV)–vectored vaccine that expresses simian immunodeficiency virus (SIV) antigens exhibits stringent and durable viral control upon SIV challenge in approximately half of vaccinated rhesus macaques. Hansen et al. (10.1126/science.1237874, see the Perspective by Goonetilleke and McMichael) sought to determine the basis for the protection and discovered that the CD8+ T cell response in vaccinated monkeys does not target canonical SIV epitopes, which SIV is known to escape, but rather generates a broad, promiscuous response. A vaccine that uses one virus to deliver components of a second virus elicits T cells that recognize noncanonical epitopes. [Also see Perspective by Goonetilleke and McMichael] CD8+ T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of antipathogen immunity. We found that simian immunodeficiency virus (SIV) protein–expressing rhesus cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8+ T cells that recognize unusual, diverse, and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope–specific CD8+ T cell responses is suppressed by the RhCMV-encoded Rh189 gene (corresponding to human CMV US11), and the promiscuous MHC class I– and class II–restricted CD8+ T cell responses occur only in the absence of the Rh157.5, Rh157.4, and Rh157.6 (human CMV UL128, UL130, and UL131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8+ T cell epitope recognition.


Journal of Virology | 2006

Vaccine-Induced Cellular Immune Responses Reduce Plasma Viral Concentrations after Repeated Low-Dose Challenge with Pathogenic Simian Immunodeficiency Virus SIVmac239

Nancy A. Wilson; Jason S. Reed; Gnankang Napoé; Shari M. Piaskowski; Andy Szymanski; Jessica Furlott; Edna J. Gonzalez; Levi Yant; Nicholas J. Maness; Gemma E. May; Taeko Soma; Matthew R. Reynolds; Eva G. Rakasz; Richard Rudersdorf; Adrian B. McDermott; David H. O'Connor; Thomas C. Friedrich; David B. Allison; Amit Patki; Louis J. Picker; Dennis R. Burton; Jing Lin; Lingyi Huang; Deepa Patel; Gwendolyn Heindecker; Jiang Fan; Michael Citron; Melanie Horton; Fubao Wang; Xiaoping Liang

ABSTRACT The goal of an AIDS vaccine regimen designed to induce cellular immune responses should be to reduce the viral set point and preserve memory CD4 lymphocytes. Here we investigated whether vaccine-induced cellular immunity in the absence of any Env-specific antibodies can control viral replication following multiple low-dose challenges with the highly pathogenic SIVmac239 isolate. Eight Mamu-A*01-positive Indian rhesus macaques were vaccinated with simian immunodeficiency virus (SIV) gag, tat, rev, and nef using a DNA prime-adenovirus boost strategy. Peak viremia (P = 0.007) and the chronic phase set point (P = 0.0192) were significantly decreased in the vaccinated cohort, out to 1 year postinfection. Loss of CD4+ memory populations was also ameliorated in vaccinated animals. Interestingly, only one of the eight vaccinees developed Env-specific neutralizing antibodies after infection. The control observed was significantly improved over that observed in animals vaccinated with SIV gag only. Vaccine-induced cellular immune responses can, therefore, exert a measure of control over replication of the AIDS virus in the complete absence of neutralizing antibody and give us hope that a vaccine designed to induce cellular immune responses might control viral replication.


Journal of Virology | 2009

Vaccine-Induced Cellular Responses Control Simian Immunodeficiency Virus Replication after Heterologous Challenge

Nancy A. Wilson; Brandon F. Keele; Jason S. Reed; Shari M. Piaskowski; Caitlin E. MacNair; Andrew J. Bett; Xiaoping Liang; Fubao Wang; Elizabeth Thoryk; Gwendolyn J. Heidecker; Michael Citron; Lingyi Huang; Jing Lin; Salvatore Vitelli; Chanook D. Ahn; Masahiko Kaizu; Nicholas J. Maness; Matthew R. Reynolds; Thomas C. Friedrich; John T. Loffredo; Eva G. Rakasz; Stephen Erickson; David B. Allison; Michael Piatak; Jeffrey D. Lifson; John W. Shiver; Danilo R. Casimiro; George M. Shaw; Beatrice H. Hahn; David I. Watkins

ABSTRACT All human immunodeficiency virus (HIV) vaccine efficacy trials to date have ended in failure. Structural features of the Env glycoprotein and its enormous variability have frustrated efforts to induce broadly reactive neutralizing antibodies. To explore the extent to which vaccine-induced cellular immune responses, in the absence of neutralizing antibodies, can control replication of a heterologous, mucosal viral challenge, we vaccinated eight macaques with a DNA/Ad5 regimen expressing all of the proteins of SIVmac239 except Env. Vaccinees mounted high-frequency T-cell responses against 11 to 34 epitopes. We challenged the vaccinees and eight naïve animals with the heterologous biological isolate SIVsmE660, using a regimen intended to mimic typical HIV exposures resulting in infection. Viral loads in the vaccinees were significantly less at both the peak (1.9-log reduction; P < 0.03) and at the set point (2.6-log reduction; P < 0.006) than those in control naïve animals. Five of eight vaccinated macaques controlled acute peak viral replication to less than 80,000 viral RNA (vRNA) copy eq/ml and to less than 100 vRNA copy eq/ml in the chronic phase. Our results demonstrate that broad vaccine-induced cellular immune responses can effectively control replication of a pathogenic, heterologous AIDS virus, suggesting that T-cell-based vaccines may have greater potential than previously appreciated.


Science | 2016

Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex-E

Scott G. Hansen; Helen L. Wu; Benjamin J. Burwitz; Colette M. Hughes; Katherine B. Hammond; Abigail B. Ventura; Jason S. Reed; Roxanne M. Gilbride; Emily Ainslie; David W. Morrow; Julia C. Ford; Andrea N. Selseth; Reesab Pathak; Daniel Malouli; Alfred W. Legasse; Michael K. Axthelm; Jay A. Nelson; Geraldine Gillespie; Lucy C. Walters; Simon Brackenridge; Hannah R. Sharpe; Cesar A. López; Klaus Früh; Bette T. Korber; Andrew J. McMichael; S. Gnanakaran; Jonah B. Sacha; Louis J. Picker

An unconventional route to protection One promising approach toward an HIV-1 vaccine involves infecting people with cytomegalovirus engineered to express proteins from HIV-1. This approach, which works by eliciting virus-killing CD8+ T cells, provides robust protection in nonhuman primate models. Hansen et al. have found out why this approach is so effective. Normally, peptide antigens presented by major histocompatibility complex-1a (MHC-Ia) activate CD8+ T cells. In vaccinated monkeys, however, CD8+ T cells reacted to peptide antigens presented by MHC-E molecules instead. Moreover, MHC-E could present a much wider range of peptides than MHC-Ia. Science, this issue p. 714 Nonclassical major histocompatibility complex E molecules can present highly diverse peptide epitopes to CD8+ T cells. Major histocompatibility complex E (MHC-E) is a highly conserved, ubiquitously expressed, nonclassical MHC class Ib molecule with limited polymorphism that is primarily involved in the regulation of natural killer (NK) cells. We found that vaccinating rhesus macaques with rhesus cytomegalovirus vectors in which genes Rh157.5 and Rh157.4 are deleted results in MHC-E–restricted presentation of highly varied peptide epitopes to CD8αβ+ T cells, at ~4 distinct epitopes per 100 amino acids in all tested antigens. Computational structural analysis revealed that MHC-E provides heterogeneous chemical environments for diverse side-chain interactions within a stable, open binding groove. Because MHC-E is up-regulated to evade NK cell activity in cells infected with HIV, simian immunodeficiency virus, and other persistent viruses, MHC-E–restricted CD8+ T cell responses have the potential to exploit pathogen immune-evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.


Journal of Virology | 2008

Patterns of CD8+ Immunodominance May Influence the Ability of Mamu-B*08-Positive Macaques To Naturally Control Simian Immunodeficiency Virus SIVmac239 Replication

John T. Loffredo; Alex T. Bean; Dominic R. Beal; Enrique J. León; Gemma E. May; Shari M. Piaskowski; Jessica Furlott; Jason S. Reed; Solomon K. Musani; Eva G. Rakasz; Thomas C. Friedrich; Nancy A. Wilson; David B. Allison; David I. Watkins

ABSTRACT Certain major histocompatibility complex (MHC) class I alleles are strongly associated with control of human immunodeficiency virus and simian immunodeficiency virus (SIV). CD8+ T cells specific for epitopes restricted by these molecules may be particularly effective. Understanding how CD8+ T cells contribute to control of viral replication should yield important insights for vaccine design. We have recently identified an Indian rhesus macaque MHC class I allele, Mamu-B*08, associated with elite control and low plasma viremia after infection with the pathogenic isolate SIVmac239. Here, we infected four Mamu-B*08-positive macaques with SIVmac239 to investigate why some of these macaques control viral replication. Three of the four macaques controlled SIVmac239 replication with plasma virus concentrations below 20,000 viral RNA copies/ml at 20 weeks postinfection; two of four macaques were elite controllers (ECs). Interestingly, two of the four macaques preserved their CD4+ memory T lymphocytes during peak viremia, and all four recovered their CD4+ memory T lymphocytes in the chronic phase of infection. Mamu-B*08-restricted CD8+ T-cell responses dominated the acute phase and accounted for 23.3% to 59.6% of the total SIV-specific immune responses. Additionally, the ECs mounted strong and broad CD8+ T-cell responses against several epitopes in Vif and Nef. Mamu-B*08-specific CD8+ T cells accounted for the majority of mutations in the virus at 18 weeks postinfection. Interestingly, patterns of viral variation in Nef differed between the ECs and the other two macaques. Natural containment of AIDS virus replication in Mamu-B*08-positive macaques may, therefore, be related to a combination of immunodominance and viral escape from CD8+ T-cell responses.


Journal of Virology | 2007

The Antiviral Efficacy of Simian Immunodeficiency Virus-Specific CD8+ T Cells Is Unrelated to Epitope Specificity and Is Abrogated by Viral Escape

John T. Loffredo; Benjamin J. Burwitz; Eva G. Rakasz; Sean P. Spencer; Jason J. Stephany; Juan Pablo Giraldo Vela; Sarah R. Martin; Jason S. Reed; Shari M. Piaskowski; Jessica Furlott; Kim L. Weisgrau; Denise S. Rodrigues; Taeko Soma; Gnankang Napoé; Thomas C. Friedrich; Nancy A. Wilson; Esper G. Kallas; David I. Watkins

ABSTRACT CD8+ T lymphocytes appear to play a role in controlling human immunodeficiency virus (HIV) replication, yet routine immunological assays do not measure the antiviral efficacy of these cells. Furthermore, it has been suggested that CD8+ T cells that recognize epitopes derived from proteins expressed early in the viral replication cycle can be highly efficient. We used a functional in vitro assay to assess the abilities of different epitope-specific CD8+ T-cell lines to control simian immunodeficiency virus (SIV) replication. We compared the antiviral efficacies of 26 epitope-specific CD8+ T-cell lines directed against seven SIV epitopes in Tat, Nef, Gag, Env, and Vif that were restricted by either Mamu-A*01 or Mamu-A*02. Suppression of SIV replication varied depending on the epitope specificities of the CD8+ T cells and was unrelated to whether the targeted epitope was derived from an early or late viral protein. Tat28-35SL8- and Gag181-189CM9-specific CD8+ T-cell lines were consistently superior at suppressing viral replication compared to the other five SIV-specific CD8+ T-cell lines. We also investigated the impact of viral escape on antiviral efficacy by determining if Tat28-35SL8- and Gag181-189CM9-specific CD8+ T-cell lines could suppress the replication of an escaped virus. Viral escape abrogated the abilities of Tat28-35SL8- and Gag181-189CM9-specific CD8+ T cells to control viral replication. However, gamma interferon (IFN-γ) enzyme-linked immunospot and IFN-γ/tumor necrosis factor alpha intracellular-cytokine-staining assays detected cross-reactive immune responses against the Gag escape variant. Understanding antiviral efficacy and epitope variability, therefore, will be important in selecting candidate epitopes for an HIV vaccine.


Journal of Virology | 2010

Whole-genome characterization of human and simian immunodeficiency virus intrahost diversity by ultradeep pyrosequencing.

Benjamin N. Bimber; Dawn M. Dudley; Michael Lauck; Ericka A. Becker; Emily N. Chin; Simon M. Lank; Haiying Li Grunenwald; Nicholas Caruccio; Mark Maffitt; Nancy A. Wilson; Jason S. Reed; James M. Sosman; Leandro F. Tarosso; Sabri Saeed Sanabani; Esper G. Kallas; Austin L. Hughes; David H. O'Connor

ABSTRACT Rapid evolution and high intrahost sequence diversity are hallmarks of human and simian immunodeficiency virus (HIV/SIV) infection. Minor viral variants have important implications for drug resistance, receptor tropism, and immune evasion. Here, we used ultradeep pyrosequencing to sequence complete HIV/SIV genomes, detecting variants present at a frequency as low as 1%. This approach provides a more complete characterization of the viral population than is possible with conventional methods, revealing low-level drug resistance and detecting previously hidden changes in the viral population. While this work applies pyrosequencing to immunodeficiency viruses, this approach could be applied to virtually any viral pathogen.


PLOS ONE | 2013

Recent Patterns in Population-Based HIV Prevalence in Swaziland

George Bicego; Rejoice Nkambule; Ingrid Peterson; Jason S. Reed; Deborah Donnell; Henry Ginindza; Yen T. Duong; Hetal Patel; Naomi Bock; Neena M. Philip; Cherry Mao

Background The 2011 Swaziland HIV Incidence Measurement Survey (SHIMS) was conducted as part of a national study to evaluate the scale up of key HIV prevention programs. Methods From a randomly selected sample of all Swazi households, all women and men aged 18-49 were considered eligible, and all consenting adults were enrolled and received HIV testing and counseling. In this analysis, population-based measures of HIV prevalence were produced and compared against similarly measured HIV prevalence estimates from the 2006-7 Swaziland Demographic and Health. Also, measures of HIV service utilization in both HIV infected and uninfected populations were documented and discussed. Results HIV prevalence among adults aged 18-49 has remained unchanged between 2006-2011 at 31-32%, with substantial differences in current prevalence between women (39%) and men (24%). In both men and women, between since 2006-7 and 2011, prevalence has fallen in the young age groups and risen in the older age groups. Over a third (38%) of the HIV-infected population was unaware of their infection status, and this differed markedly between men (50%) and women (31%). Of those aware of their HIV-positive status, a higher percentage of men (63%) than women (49%) reported ART use. Conclusions While overall HIV prevalence remains roughly constant, age-specific changes strongly suggest both improved survival of the HIV-infected and a reduction in new HIV infections. Awareness of HIV status and entry into ART services has improved in recent years but remains too low. This study identifies opportunities to improve both HIV preventive and care services in Swaziland.


Nature Medicine | 2016

Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in infant macaques

Ann J. Hessell; J. Pablo Jaworski; Erin Epson; Kenta Matsuda; Shilpi Pandey; Christoph A. Kahl; Jason S. Reed; William F. Sutton; Katherine B. Hammond; Tracy Cheever; Philip T. Barnette; Alfred W. Legasse; Shannon L. Planer; Jeffrey J. Stanton; Amarendra Pegu; Xuejun Chen; Don C. Siess; David Burke; Byung Park; Michael K. Axthelm; Anne D. Lewis; Vanessa M. Hirsch; Barney S. Graham; John R. Mascola; Jonah B. Sacha; Nancy L. Haigwood

Prevention of mother-to-child transmission (MTCT) of HIV remains a major objective where antenatal care is not readily accessible. We tested HIV-1–specific human neutralizing monoclonal antibodies (NmAbs) as a post-exposure therapy in an infant macaque model for intrapartum MTCT. One-month-old rhesus macaques were inoculated orally with the simian-human immunodeficiency virus SHIVSF162P3. On days 1, 4, 7 and 10 after virus exposure, we injected animals subcutaneously with NmAbs and quantified systemic distribution of NmAbs in multiple tissues within 24 h after antibody administration. Replicating virus was found in multiple tissues by day 1 in animals that were not treated. All NmAb-treated macaques were free of virus in blood and tissues at 6 months after exposure. We detected no anti-SHIV T cell responses in blood or tissues at necropsy, and no virus emerged after CD8+ T cell depletion. These results suggest that early passive immunotherapy can eliminate early viral foci and thereby prevent the establishment of viral reservoirs.


Journal of Virology | 2007

Pol-Specific CD8+ T Cells Recognize Simian Immunodeficiency Virus-Infected Cells Prior to Nef-Mediated Major Histocompatibility Complex Class I Downregulation

Jonah B. Sacha; Chungwon Chung; Jason S. Reed; Anna K. Jonas; Alexander T. Bean; Sean P. Spencer; Wonhee Lee; Lara Vojnov; Richard Rudersdorf; Thomas C. Friedrich; Nancy A. Wilson; Jeffrey D. Lifson; David I. Watkins

ABSTRACT Effective, vaccine-induced CD8+ T-cell responses should recognize infected cells early enough to prevent production of progeny virions. We have recently shown that Gag-specific CD8+ T cells recognize simian immunodeficiency virus-infected cells at 2 h postinfection, whereas Env-specific CD8+ T cells do not recognize infected cells until much later in infection. However, it remains unknown when other proteins present in the viral particle are presented to CD8+ T cells after infection. To address this issue, we explored CD8+ T-cell recognition of epitopes derived from two other relatively large virion proteins, Pol and Nef. Surprisingly, infected cells efficiently presented CD8+ T-cell epitopes from virion-derived Pol proteins within 2 h of infection. In contrast, Nef-specific CD8+ T cells did not recognize infected cells until 12 h postinfection. Additionally, we show that SIVmac239 Nef downregulated surface major histocompatibility complex class I (MHC-I) molecules beginning at 12 h postinfection, concomitant with presentation of Nef-derived CD8+ T-cell epitopes. Finally, Pol-specific CD8+ T cells eliminated infected cells as early as 6 h postinfection, well before MHC-I downregulation, suggesting a previously underappreciated antiviral role for Pol-specific CD8+ T cells.

Collaboration


Dive into the Jason S. Reed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy A. Wilson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shari M. Piaskowski

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Alfred W. Legasse

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael K. Axthelm

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Eva G. Rakasz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Nicholas J. Maness

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge