Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Sakamoto is active.

Publication


Featured researches published by Jason Sakamoto.


Nature Nanotechnology | 2008

Seven challenges for nanomedicine

Wendy R. Sanhai; Jason Sakamoto; Richard Canady; Mauro Ferrari

Nanomedicine offers new opportunities to fight diseases but a global effort is needed to safely translate laboratory innovation to the clinic. Seven priority areas have been identified for this endeavour.


Trends in Pharmacological Sciences | 2010

Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases

Biana Godin; Jason Sakamoto; Rita E. Serda; Alessandro Grattoni; Ali Bouamrani; Mauro Ferrari

Nanomedicine is an emerging field that utilizes nanotechnology concepts for advanced therapy and diagnostics. This convergent discipline merges research areas such as chemistry, biology, physics, mathematics and engineering. It therefore bridges the gap between molecular and cellular interactions, and has the potential to revolutionize medicine. This review presents recent developments in nanomedicine research poised to have an important impact on the treatment of cardiovascular disease. This will occur through improvement of the diagnosis and therapy of cardiovascular disorders as atherosclerosis, restenosis and myocardial infarction. Specifically, we discuss the use of nanoparticles for molecular imaging and advanced therapeutics, specially designed drug eluting stents and in vivo/ex vivo early detection techniques.


Biomedical Microdevices | 2009

Nanotechnology for breast cancer therapy

Takemi Tanaka; Paolo Decuzzi; Massimo Cristofanilli; Jason Sakamoto; Ennio Tasciotti; Fredika M. Robertson; Mauro Ferrari

Breast cancer is the field of medicine with the greatest presence of nanotechnological therapeutic agents in the clinic. A pegylated form of liposomally encapsulated doxorubicin is routinely used for treatment against metastatic cancer, and albumin nanoparticulate chaperones of paclitaxel were approved for locally recurrent and metastatic disease in 2005. These drugs have yielded substantial clinical benefit, and are steadily gathering greater beneficial impact. Clinical trials currently employing these drugs in combination with chemo and biological therapeutics exceed 150 worldwide. Despite these advancements, breast cancer morbidity and mortality is unacceptably high. Nanotechnology offers potential solutions to the historical challenge that has rendered breast cancer so difficult to contain and eradicate: the extreme biological diversity of the disease presentation in the patient population and in the evolutionary changes of any individual disease, the multiple pathways that drive disease progression, the onset of ‘resistance’ to established therapeutic cocktails, and the gravity of the side effects to treatment, which result from generally very poor distribution of the injected therapeutic agents in the body. A fundamental requirement for success in the development of new therapeutic strategies is that breast cancer specialists—in the clinic, the pharmaceutical and the basic biological laboratory—and nanotechnologists—engineers, physicists, chemists and mathematicians—optimize their ability to work in close collaboration. This further requires a mutual openness across cultural and language barriers, academic reward systems, and many other ‘environmental’ divides. This paper is respectfully submitted to the community to help foster the mutual interactions of the breast cancer world with micro- and nano-technology, and in particular to encourage the latter community to direct ever increasing attention to breast cancer, where an extraordinary beneficial impact may result. The paper initiates with an introductory overview of breast cancer, its current treatment modalities, and the current role of nanotechnology in the clinic. Our perspectives are then presented on what the greatest opportunities for nanotechnology are; this follows from an analysis of the role of biological barriers that adversely determine the biological distribution of intravascularly injected therapeutic agents. Different generations of nanotechnology tools for drug delivery are reviewed, and our current strategy for addressing the sequential bio-barriers is also presented, and is accompanied by an encouragement to the community to develop even more effective ones.


Clinical Cancer Research | 2013

Enhancing chemotherapy response with sustained EphA2 silencing using multistage vector delivery

Haifa Shen; Cristian Rodriguez-Aguayo; Rong Xu; Vianey Gonzalez-Villasana; Junhua Mai; Yi Huang; Guodong Zhang; Xiaojing Guo; Litao Bai; Guoting Qin; Xiaoyong Deng; Qingpo Li; Donald R. Erm; Xuewu Liu; Jason Sakamoto; Arturo Chavez-Reyes; Hee Dong Han; Anil K. Sood; Mauro Ferrari; Gabriel Lopez-Berestein

Purpose: RNA interference has the potential to specifically knockdown the expression of target genes and thereby transform cancer therapy. However, lack of effective delivery of siRNA has dramatically limited its in vivo applications. We have developed a multistage vector (MSV) system, composed of discoidal porous silicon particles loaded with nanotherapeutics, that directs effective delivery and sustained release of siRNA in tumor tissues. In this study, we evaluated therapeutic efficacy of MSV-loaded EphA2 siRNA (MSV/EphA2) with murine orthotopic models of metastatic ovarian cancers as a first step toward development of a new class of nanotherapeutics for the treatment of ovarian cancer. Experimental Design: Tumor accumulation of MSV/EphA2 and sustained release of siRNA from MSV were analyzed after intravenous administration of MSV/siRNA. Nude mice with metastatic SKOV3ip2 tumors were treated with MSV/EphA2 and paclitaxel, and therapeutic efficacy was assessed. Mice with chemotherapy-resistant HeyA8 ovarian tumors were treated with a combination of MSV/EphA2 and docetaxel, and enhanced therapeutic efficacy was evaluated. Results: Treatment of SKOV3ip2 tumor mice with MSV/EphA2 biweekly for 6 weeks resulted in dose-dependent (5, 10, and 15 μg/mice) reduction of tumor weight (36%, 64%, and 83%) and number of tumor nodules compared with the control groups. In addition, tumor growth was completely inhibited when mice were treated with MSV/EphA2 in combination with paclitaxel. Furthermore, combination treatment with MSV/EphA2 and docetaxel inhibited growth of HeyA8-MDR tumors, which were otherwise resistant to docetaxel treatment. Conclusion: These findings indicate that MSV/EphA2 merits further development as a novel therapeutic agent for ovarian cancer. Clin Cancer Res; 19(7); 1806–15. ©2013 AACR.


Expert Opinion on Drug Delivery | 2007

Antibiological barrier nanovector technology for cancer applications

Jason Sakamoto; Ananth Annapragada; Paolo Decuzzi; Mauro Ferrari

The advent of sophisticated drug delivery strategies for cancer applications has inundated the scientific and clinical community with new tactics and approaches such as molecular targeting, nanotechnology-based methods and personalised therapies. Unfortunately, the clinical impact has been moderate at best, falling significantly short from revolutionising existing chemotherapeutic methodologies. To this day, a cancer patient has a higher probability of receiving traditional systemically administered drugs than a more sophisticated targeted or nanotechnology-based therapeutic. This is not a reflection upon the novelty or quality of the technologies, but an indication of opportunity for a new approach that offers the realisation of the full potential of these scientific advances. This approach acknowledges the significance of the numerous biological barriers presented in the human body and their sequential nature. It is then recommended that computational mathematical tools are used to predict which nanovectors, surface modifications, therapeutic agents and penetration enhancers to use for a multi-stage drug delivery strategy. An approach where several stages of micro-/nano-vectors are nested within each other and delivered to overcome specific biological barriers to ultimately release a concentrated dose of a therapeutic payload at the intended lesion site. This novel, multi-stage strategy enables efficient localised delivery of chemotoxic drugs that may lead to significant improvements in therapy efficacy, reduced systemic toxicity and decreased total amount of injected drugs.


PLOS ONE | 2012

Human lung cancer cells grown in an ex vivo 3D lung model produce matrix metalloproteinases not produced in 2D culture.

Dhruva K. Mishra; Jason Sakamoto; Michael J. Thrall; Brandi N. Baird; Shanda H. Blackmon; Mauro Ferrari; Jonathan M. Kurie; Min P. Kim

We compared the growth of human lung cancer cells in an ex vivo three-dimensional (3D) lung model and 2D culture to determine which better mimics lung cancer growth in patients. A549 cells were grown in an ex vivo 3D lung model and in 2D culture for 15 days. We measured the size and formation of tumor nodules and counted the cells after 15 days. We also stained the tissue/cells for Ki-67, and Caspase-3. We measured matrix metalloproteinase (MMP) levels in the conditioned media and in blood plasma from patients with adenocarcinoma of the lung. Organized tumor nodules with intact vascular space formed in the ex vivo 3D lung model but not in 2D culture. Proliferation and apoptosis were greater in the ex vivo 3D lung model compared to the 2D culture. After 15 days, there were significantly more cells in the 2D culture than the 3D model. MMP-1, MMP-9, and MMP-10 production were significantly greater in the ex vivo 3D lung model. There was no production of MMP-9 in the 2D culture. The patient samples contained MMP-1, MMP-2, MMP-9, and MMP-10. The human lung cancer cells grown on ex vivo 3D model form perfusable nodules that grow over time. It also produced MMPs that were not produced in 2D culture but seen in human lung cancer patients. The ex vivo 3D lung model may more closely mimic the biology of human lung cancer development than the 2D culture.


Technology in Cancer Research & Treatment | 2005

The molecular analysis of breast cancer utilizing targeted nanoparticle based ultrasound contrast agents

Jason Sakamoto; Bryan R. Smith; B. Xie; S. I. Rokhlin; Stephen C. Lee; Mauro Ferrari

This study was structured to challenge the hypothesis that nano-sized particulates could be molecularly targeted and bound to the prognostic and predictive HER-2/neu cell membrane receptor to elicit detectable changes in ultrasound response from human breast cancer cells. SKBR-3 human breast cancer cells were enlisted to test the efficacy of the particle conjugation strategy used in this study and ultimately, to provide conclusive remarks regarding the validity of the stated hypothesis. A characterization-mode ultrasound (CMUS) system was used to apply a continuum mechanics based, two-step inversion algorithm to reconstruct the mechanical material properties of four cell/agarose test conditions upon three independent test samples. The four test conditions include: Herceptin® conjugated iron oxide nanoparticles bound to cells (HER-con), Herceptin® bound to cells (HER), iso-type matched antibody conjugated iron oxide nanoparticles bound to cells (ISO-con), and Cold Flow Buffer mixed with agarose (CFB). The statistical analysis of these ultrasound results supported the ability to differentiate between HER-2/neu positive SKBR-3 cells that have been successfully tagged with Herceptin® conjugated iron oxide particles to those that have not demonstrated particle binding. These findings serve as promising proof-of-concept data for the development of a quantitative histopathologic evaluation tool directed towards both in situ and in vivo applications. The ultimate goal of this research is to exploit the molecular expression of the HER-2/neu protein to offer rapid, quantitative ultrasound information concerning the malignancy rating of human breast tissue employing tumor targeting nanoparticle based ultrasound contrast agents. When fully developed, this could potentially help 32,000–63,000 women efficiently find their proper treatment strategy to fight and win their battle against breast cancer.


Nanoscale | 2011

Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

Ye Hu; Yang Peng; Kevin Lin; Haifa Shen; Louis Brousseau; Jason Sakamoto; Tong Sun; Mauro Ferrari

Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV=18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.


Journal of Tissue Engineering and Regenerative Medicine | 2017

Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs.

Joan E. Nichols; Saverio La Francesca; Stephanie Vega; Jean A. Niles; Lissenya B. Argueta; Michael Riddle; Jason Sakamoto; Grace Vargas; Rahul Pal; Lee C. Woodson; Jessica Rhudy; Dan Lee; David Seanor; Gerald A. Campbell; Vicki J. Schnadig; Joaquin Cortiella

We report, for the first time, the development of an organ culture system and protocols to support recellularization of whole acellular (AC) human paediatric lung scaffolds. The protocol for paediatric lung recellularization was developed using human transformed or immortalized cell lines and single human AC lung scaffolds. Using these surrogate cell populations, we identified cell number requirements, cell type and order of cell installations, flow rates and bioreactor management methods necessary for bioengineering whole lungs. Following the development of appropriate cell installation protocols, paediatric AC scaffolds were recellularized using primary lung alveolar epithelial cells (AECs), vascular cells and tracheal/bronchial cells isolated from discarded human adult lungs. Bioengineered paediatric lungs were shown to contain well‐developed vascular, respiratory epithelial and lung tissue, with evidence of alveolar–capillary junction formation. Types I and II AECs were found thoughout the paediatric lungs. Furthermore, surfactant protein‐C and ‐D and collagen I were produced in the bioengineered lungs, which resulted in normal lung compliance measurements. Although this is a first step in the process of developing tissues for transplantation, this study demonstrates the feasibility of producing bioengineered lungs for clinical use. Copyright


Journal of Controlled Release | 2014

Enhanced gene delivery in porcine vasculature tissue following incorporation of adeno-associated virus nanoparticles into porous silicon microparticles

Kellie I. McConnell; Jessica Rhudy; Kenji Yokoi; Jianhua Gu; Aaron Mack; Junghae Suh; Saverio La Francesca; Jason Sakamoto; Rita E. Serda

There is an unmet clinical need to increase lung transplant successes, patient satisfaction and to improve mortality rates. We offer the development of a nanovector-based solution that will reduce the incidence of lung ischemic reperfusion injury (IRI) leading to graft organ failure through the successful ex vivo treatment of the lung prior to transplantation. The innovation is in the integrated application of our novel porous silicon (pSi) microparticles carrying adeno-associated virus (AAV) nanoparticles, and the use of our ex vivo lung perfusion/ventilation system for the modulation of pro-inflammatory cytokines initiated by ischemic pulmonary conditions prior to organ transplant that often lead to complications. Gene delivery of anti-inflammatory agents to combat the inflammatory cascade may be a promising approach to prevent IRI following lung transplantation. The rationale for the device is that the microparticle will deliver a large payload of virus to cells and serve to protect the AAV from immune recognition. The microparticle-nanoparticle hybrid device was tested both in vitro on cell monolayers and ex vivo using either porcine venous tissue or a pig lung transplantation model, which recapitulates pulmonary IRI that occurs clinically post-transplantation. Remarkably, loading AAV vectors into pSi microparticles increases gene delivery to otherwise non-permissive endothelial cells.

Collaboration


Dive into the Jason Sakamoto's collaboration.

Top Co-Authors

Avatar

Mauro Ferrari

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ennio Tasciotti

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Jessica Rhudy

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Rita E. Serda

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Xuewu Liu

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Biana Godin

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Haifa Shen

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Joan E. Nichols

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Ye Hu

Houston Methodist Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge