Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Sarich is active.

Publication


Featured researches published by Jason Sarich.


Physical Review C | 2010

Nuclear Energy Density Optimization

Markus Kortelainen; Thomas Lesinski; Jorge J. Moré; W. Nazarewicz; Jason Sarich; Nicolas Schunck; Mario Stoitsov; Stefan M. Wild

We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work ��


Physical Review C | 2012

Nuclear energy density optimization: Large deformations

Markus Kortelainen; J. McDonnell; W. Nazarewicz; P.-G. Reinhard; Jason Sarich; Nicolas Schunck; Mario Stoitsov; Stefan M. Wild

A new Skyrme-like energy density suitable for studies of strongly elongated nuclei has been determined in the framework of the Hartree-Fock-Bogoliubov theory using the recently developed model-based, derivative-free optimization algorithm POUNDerS. A sensitivity analysis at the optimal solution has revealed the importance of states at large deformations in driving the parameterization of the functional. The good agreement with experimental data on masses and separation energies, achieved with the previous parameterization UNEDF0, is largely preserved. In addition, the new energy density UNEDF1 gives a much improved description of the fission barriers in ^{240}Pu and neighboring nuclei.


Physical Review Letters | 2013

Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order

A. Ekström; Gustav Baardsen; Christian Forssén; Gaute Hagen; M. Hjorth-Jensen; Gustav R. Jansen; R. Machleidt; W. Nazarewicz; T. Papenbrock; Jason Sarich; Stefan M. Wild

We optimize the nucleon-nucleon interaction from chiral effective field theory at next-to-next-to-leading order (NNLO). The resulting new chiral force NNLO(opt) yields χ(2)≈1 per degree of freedom for laboratory energies below approximately 125 MeV. In the A=3, 4 nucleon systems, the contributions of three-nucleon forces are smaller than for previous parametrizations of chiral interactions. We use NNLO(opt) to study properties of key nuclei and neutron matter, and we demonstrate that many aspects of nuclear structure can be understood in terms of this nucleon-nucleon interaction, without explicitly invoking three-nucleon forces.


Computer Physics Communications | 2013

Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis (III) HFBTHO (v3.00): a new version of the program.

Mario Stoitsov; Nicolas Schunck; Markus Kortelainen; N. Michel; Hai Ah Nam; E. Olsen; Jason Sarich; Stefan M. Wild

We describe the new version 2.00d of the code hfbtho that solves the nuclear Skyrme Hartree-Fock (HF) or Skyrme Hartree-Fock-Bogolyubov (HFB)problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the modified Broyden method for non-linear problems, (ii) optional breaking of reflection symmetry, (iii) calculation of axial multipole moments, (iv) finite temperature formalism for the HFB method, (v) linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations, (vi) blocking of quasi-particles in the Equal Filling Approximation (EFA), (vii) framework for generalized energy density with arbitrary density-dependences, and (viii) shared memory parallelism via OpenMP pragmas.


Physical Review C | 2010

One-quasiparticle States in the Nuclear Energy Density Functional Theory

Nicolas Schunck; J. Dobaczewski; J. McDonnell; J. More; W. Nazarewicz; Jason Sarich; Mario Stoitsov

We study one-quasiproton excitations in the rare-earth region in the framework of the nuclear Density Functional Theory in the Skyrme-Hartree-Fock-Bogoliubov variant. The blocking prescription is implemented exactly with the time-odd mean field fully taken into account. The equal filling approximation is compared with the exact blocking procedure. We show that both procedures are strictly equivalent when the time-odd channel is neglected, and discuss how nuclear alignment properties affect the time-odd fields. The impact of time-odd fields on calculated one-quasiproton bandhead energies is found to be rather small, of the order of 100-200 keV; hence, the equal filling approximation is sufficiently precise for most practical applications. The triaxial polarization of the core induced by the odd particle is studied. We also briefly discuss the occurrence of finite-size spin instabilities that are present in calculations for odd-mass nuclei when certain Skyrme functionals are employed.


Physical Review C | 2014

Nuclear energy density optimization: Shell structure

Markus Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P.-G. Reinhard; Jason Sarich; Nicolas Schunck; Stefan M. Wild; Dany Davesne; J. Erler; Alessandro Pastore

Background: Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. Purpose: In this work, we propose a new parametrization unedf2 of the Skyrme energy density functional. Methods: The functional optimization is carried out using the pounders optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parametrization unedf1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. Results: The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting unedf2 parametrization is comparable with unedf1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous unedf parametrizations, the parameter confidence interval for unedf2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. Conclusions: unedf2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits, and significant changes to the form of the functional are needed.


Computer Physics Communications | 2009

Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VI) hfodd (v2.40h): A new version of the program ✩

J. Dobaczewski; W. Satula; B. G. Carlsson; J. Engel; P. Olbratowski; P. Powalowski; M. Sadziak; Jason Sarich; Nicolas Schunck; Andrzej Staszczak; Mario Stoitsov; M. Zalewski; H. Zdunczuk

We describe the new version (v2.38j) of the code hfodd which solves the nuclear SkyrmeHartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented: (i) projection on good angular momentum (for the Hartree-Fock states), (ii) calculation of the GCM kernels, (iii) calculation of matrix elements of the Yukawa interaction, (iv) the BCS solutions for statedependent pairing gaps, (v) the HFB solutions for broken simplex symmetry, (vi) calculation of Bohr deformation parameters, (vii) constraints on the Schiff moments and scalar multipole moments, (viii) the D T transformations and rotations of wave functions, (ix) quasiparticle blocking for the HFB solutions in odd and odd-odd nuclei, (x) the Broyden method to accelerate the convergence, (xi) the Lipkin-Nogami method to treat pairing correlations, (xii) the exact Coulomb exchange term, (xiii) several utility options, and we have corrected two insignificant errors.


Journal of Computational Chemistry | 2004

Component-based integration of chemistry and optimization software

Joseph P. Kenny; Steven J. Benson; Yuri Alexeev; Jason Sarich; Curtis L. Janssen; Lois Curfman McInnes; Manojkumar Krishnan; Jarek Nieplocha; Elizabeth Jurrus; Carl Fahlstrom; Theresa L. Windus

Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component‐based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.


Computer Physics Communications | 2013

Computational nuclear quantum many-body problem: The UNEDF project

S. K. Bogner; Aurel Bulgac; Joseph Carlson; J. Engel; George I. Fann; R. J. Furnstahl; Stefano Gandolfi; Gaute Hagen; Mihai Horoi; Calvin W. Johnson; Markus Kortelainen; Ewing L. Lusk; Pieter Maris; Hai Ah Nam; Petr Navratil; W. Nazarewicz; Esmond G. Ng; Gustavo Nobre; Erich Ormand; T. Papenbrock; Junchen Pei; Steven C. Pieper; Sofia Quaglioni; Kenneth J. Roche; Jason Sarich; Nicolas Schunck; Masha Sosonkina; J. Terasaki; I. J. Thompson; James P. Vary

The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.


Informs Journal on Computing | 2008

Kestrel: An Interface from Optimization Modeling Systems to the NEOS Server

Elizabeth D. Dolan; Robert Fourer; Jean Pierre Goux; Todd S. Munson; Jason Sarich

The NEOS server provides access to a variety of optimization resources via the Internet. The new Kestrel interface to the server enables local modeling environments to request NEOS optimization services and retrieve the results for local visualization and analysis so that users have the same convenient access to remote NEOS solvers as to those installed locally. Kestrel agents have been implemented for the AMPL and GAMS modeling environments; these agents have been designed so that subproblems can be queued for execution and later retrieval of results, making possible a rudimentary form of parallel processing.

Collaboration


Dive into the Jason Sarich's collaboration.

Top Co-Authors

Avatar

Nicolas Schunck

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stefan M. Wild

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. Nazarewicz

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

J. McDonnell

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dave Higdon

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mario Stoitsov

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jorge J. Moré

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Olsen

University of Tennessee

View shared research outputs
Researchain Logo
Decentralizing Knowledge