Jason Schiemer
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason Schiemer.
Advanced Functional Materials | 2014
Jason Schiemer; Michael A. Carpenter; D. M. Evans; J. M. Gregg; A. Schilling; Miryam Arredondo; Marin Alexe; Dilsom A. Sanchez; N. Ortega; R. S. Katiyar; M. Echizen; E. Colliver; Sian Elizabeth Dutton; J. F. Scott
Recently, lead iron tantalate/lead zirconium titanate (PZTFT) was demonstrated to possess large, but unreliable, magnetoelectric coupling at room temperature. Such large coupling would be desirable for device applications but reproducibility would also be critical. To better understand the coupling, the properties of all 3 ferroic order parameters, elastic, electric, and magnetic, believed to be present in the material across a range of temperatures, are investigated. In high temperature elastic data, an anomaly is observed at the orthorhombic mm2 to tetragonal 4mm transition, Tot = 475 K, and a softening trend is observed as the temperature is increased toward 1300 K, where the material is known to become cubic. Thermal degradation makes it impossible to measure elastic behavior up to this temperature, however. In the low temperature region, there are elastic anomalies near ≈40 K and in the range 160–245 K. The former is interpreted as being due to a magnetic ordering transition and the latter is interpreted as a hysteretic regime of mixed rhombohedral and orthorhombic structures. Electrical and magnetic data collected below room temperature show anomalies at remarkably similar temperature ranges to the elastic data. These observations are used to suggest that the three order parameters in PZTFT are strongly coupled.
Applied Physics Letters | 2011
Qian Li; Yun Liu; Jason Schiemer; Paul Smith; Zhenrong Li; Raymond Withers; Zhuo Xu
Q.L., Y.L., and R.L.W. acknowledge financial support from the Australian Research Council ARC in the form of an ARC Discovery Grant No. DP0877069.
Chemistry of Materials | 2013
Jason Schiemer; Raymond Withers; Yun Liu; Michael A. Carpenter
Elastic and anelastic properties of a member of the BiFeO3–CaFeO2.5 perovskite solid solution (BCFO), which is known to have multiple instabilities, have been investigated by resonant ultrasound spectroscopy. This phase, with 64% Bi and 36% Ca on the A site, is antiferromagnetic (TN ∼650 K) and has an ordered arrangement of oxygen vacancies with tetragonal lattice geometry. The inverse mechanical quality factor, Q–1, has a maximum near 100 K, correlating closely with a peak in dielectric loss, reported previously, consistent with a loss mechanism that involves the movement of oxygen vacancies accompanied by local lattice distortion. At higher temperature, there is a further acoustic loss peak that is correlated with complex impedance anomalies. There is no clear relationship to the magnetic transition, and the observations are interpreted as relating to ionic conductivity. A small stiffening, scaling with the square of the magnetic order parameter below TN, indicates that the main coupling with strain is biquadratic, confirming that conventional coupling of magnetic order with symmetry-breaking shear strains is weak in BCFO. Data from the literature for BCFO indicates that local strain fields are likely to be responsible for suppressing the spin cycloid present in BiFeO3.
Dalton Transactions | 2011
Zhiguo Yi; Yun Liu; Michael A. Carpenter; Jason Schiemer; Raymond Withers
K(0.46)Na(0.54)NbO(3) ceramics have been fabricated via a chemical synthesis route. It was found that 500 °C heat treatment is sufficient to crystallize the niobate powder and the ceramic sintered at 1080 °C in air shows good ferroelectric and piezoelectric properties (P(r) ~ 15 μC cm(-2), d(33) ~ 120 pC N(-1)). Electron diffraction patterns not only determine the space group symmetry of Pcm2(1) for the first time, but also reveal structural disorder in K(0.46)Na(0.54)NbO(3), and 1-D correlated strings of Nb-O atomic displacements are suggested to account for the polar behaviour. Elastic constants such as the bulk and shear moduli as well as their evolution with temperature were also measured using the resonant ultrasound spectroscopy method.
Journal of Physics: Condensed Matter | 2015
Michael A. Carpenter; Jason Schiemer; Ioan Lascu; Richard J. Harrison; Ashok Kumar; R. S. Katiyar; N. Ortega; Dilsom A. Sanchez; C. Salazar Mejía; Walter Schnelle; M. Echizen; H. Shinohara; A. J. F. Heap; R. Nagaratnam; Sian Elizabeth Dutton; J. F. Scott
Resonant Ultrasound Spectroscopy has been used to characterize elastic and anelastic anomalies in a polycrystalline sample of multiferroic Pb(Fe(0.5)Nb(0.5))O(3) (PFN). Elastic softening begins at ~550 K, which is close to the Burns temperature marking the development of dynamical polar nanoregions. A small increase in acoustic loss at ~425 K coincides with the value of T(*) reported for polar nanoregions starting to acquire a static or quasi-static component. Softening of the shear modulus by ~30-35% through ~395-320 K, together with a peak in acoustic loss, is due to classical strain/order parameter coupling through the cubic → tetragonal → monoclinic transition sequence of ferroelectric/ferroelastic transitions. A plateau of high acoustic loss below ~320 K is due to the mobility under stress of a ferroelastic microstructure but, instead of the typical effects of freezing of twin wall motion at some low temperature, there is a steady decrease in loss and increase in elastic stiffness below ~85 K. This is attributed to freezing of a succession of strain-coupled defects with a range of relaxation times and is consistent with a report in the literature that PFN develops a tweed microstructure over a wide temperature interval. No overt anomaly was observed near the expected Néel point, ~145 K, consistent with weak/absent spin/lattice coupling but heat capacity measurements showed that the antiferromagnetic transition is actually smeared out or suppressed. Instead, the sample is weakly ferromagnetic up to ~560 K, though it has not been possible to exclude definitively the possibility that this could be due to some magnetic impurity. Overall, evidence from the RUS data is of a permeating influence of static and dynamic strain relaxation effects which are attributed to local strain heterogeneity on a mesoscopic length scale. These, in turn, must have a role in determining the magnetic properties and multiferroic character of PFN.
Journal of Physics: Condensed Matter | 2012
Jason Schiemer; Raymond Withers; Michael A. Carpenter; Yun Liu; Jia Wang; Lasse Noren; Qian Li; W. D. Hutchison
This report details correlated electrical, mechanical and magnetic behaviour in BiFeO(3) ceramics doped with 10% Ln (Ln = Sm, Nd) ions on the Bi, or perovskite A, site and synthesized by a sol-gel method. The ceramics exhibit bulk piezoelectric and ferroelectric properties and clear ferroelectric domain patterns through piezoresponse force microscopy. Resonant ultrasound spectroscopy, dielectric spectroscopy and magnetometry studies show correlated magnetoelectromechanical behaviour and the existence of weak ferromagnetism for both compositions. An anomaly with simultaneous mechanical and magnetic signatures is discovered in both materials near room temperature, while previously reported transitions and anomalies are found to exhibit electro- and/or magnetomechanical coupling. Magnetism is significantly enhanced in the Sm doped sample, which is a promising multiferroic material.
EPL | 2015
Jason Schiemer; L. J. Spalek; Siddharth S. Saxena; C. Panagopoulos; T. Katsufuji; Michael A. Carpenter
The multiferroic properties of EuTiO3 are greatly enhanced when a sample is strained, signifying that coupling between strain and structural, magnetic or ferroelectric order parameters is extremely important. Here resonant ultrasound spectroscopy has been used to investigate strain coupling effects, as well as possible additional phase transitions, through their influence on elastic and anelastic relaxations that occur as a function of temperature between 2 and 300 K and with applied magnetic field up to 14 T. Antiferromagnetic ordering is accompanied by acoustic loss and softening, and a weak magnetoelastic effect is also associated with the change in magnetization direction below . Changes in loss due to the influence of magnetic field suggest the existence of magnetic defects which couple with strain and may play a role in pinning of ferroelastic twin walls.
Journal of Physics: Condensed Matter | 2015
C. Salazar Mejía; Ajaya K. Nayak; Jason Schiemer; Claudia Felser; M. Nicklas; Michael A. Carpenter
The lattice dynamics in the polycrystalline shape-memory Heusler alloy Ni50Mn35In15 have been studied by means of resonant ultrasound spectroscopy (RUS). RUS spectra were collected in a frequency range 100-1200 kHz between 10 and 350 K. Ni50Mn35In15 exhibits a ferromagnetic transition at 313 K in the austenite phase and a martensitic transition at 248 K accompanied by a change of the magnetic state. Furthermore it displays a paramagnetic to ferrimagnetic transition within the martensitic phase. We determined the temperature dependence of the shear modulus and the acoustic attenuation of Ni50Mn35In15 and compared it with magnetization data. Following the structural softening, which accompanies the martensitic transition as a pretransitional phenomenon, a strong stiffening of the lattice is observed at the martensitic magneto-structural transition. Only a weak magnetoelastic coupling is evidenced at the Curie temperatures both in austenite and martensite phases. The large acoustic damping in the martensitic phase compared with the austenitic phase reflects the motion of the twin walls, which freezes out in the low temperature region.
Physical Review B | 2018
C. Salazar Mejía; N.-O. Born; Jason Schiemer; Claudia Felser; Michael A. Carpenter; M. Nicklas
Resonant ultrasound spectroscopy and magnetic susceptibility experiments have been used to characterize strain coupling phenomena associated with structural and magnetic properties of the shape-memory Heusler alloy series Ni 50 + x Mn 25 − x Ga 25 ( x = 0 , 2.5, 5.0, and 7.5). All samples exhibit a martensitic transformation at temperature T M and ferromagnetic ordering at temperature T C , while the pure end member ( x = 0 ) also has a premartensitic transition at T P M , giving four different scenarios: T C > T P M > T M , T C > T M without premartensitic transition, T C ≈ T M , and T C < T M . Fundamental differences in elastic properties, i.e., stiffening versus softening, are explained in terms of coupling of shear strains with three discrete order parameters relating to magnetic ordering, a soft mode, and the electronic instability responsible for the large strains typical of martensitic transitions. Linear-quadratic or biquadratic coupling between these order parameters, either directly or indirectly via the common strains, is then used to explain the stabilities of the different structures. Acoustic losses are attributed to critical slowing down at the premartensite transition, to the mobility of interphases between coexisting phases at the martensitic transition, and to mobility of some aspect of the twin walls under applied stress down to the lowest temperatures at which measurements were made.
Journal of Materials Science | 2016
Jason Schiemer; I. Lascu; Richard J. Harrison; Anil Kumar; R. S. Katiyar; Dilsom A. Sanchez; N. Ortega; C. Salazar Mejía; Walter Schnelle; H. Shinohara; A. J. F. Heap; R. Nagaratnam; Sian Elizabeth Dutton; J. F. Scott; B. Nair; N. D. Mathur; Michael A. Carpenter
Elastic and anelastic properties of ceramic samples of multiferroic perovskites with nominal compositions across the binary join PbZr0.53Ti0.47O3–PbFe0.5Ta0.5O3 (PZT–PFT) have been assembled to create a binary phase diagram and to address the role of strain relaxation associated with their phase transitions. Structural relationships are similar to those observed previously for PbZr0.53Ti0.47O3–PbFe0.5Nb0.5O3 (PZT–PFN), but the magnitude of the tetragonal shear strain associated with the ferroelectric order parameter appears to be much smaller. This leads to relaxor character for the development of ferroelectric properties in the end member PbFe0.5Ta0.5O3. As for PZT–PFN, there appear to be two discrete instabilities rather than simply a reorientation of the electric dipole in the transition sequence cubic–tetragonal–monoclinic, and the second transition has characteristics typical of an improper ferroelastic. At intermediate compositions, the ferroelastic microstructure has strain heterogeneities on a mesoscopic length scale and, probably, also on a microscopic scale. This results in a wide anelastic freezing interval for strain-related defects rather than the freezing of discrete twin walls that would occur in a conventional ferroelastic material. In PFT, however, the acoustic loss behaviour more nearly resembles that due to freezing of conventional ferroelastic twin walls. Precursor softening of the shear modulus in both PFT and PFN does not fit with a Vogel–Fulcher description, but in PFT there is a temperature interval where the softening conforms to a power law suggestive of the role of fluctuations of the order parameter with dispersion along one branch of the Brillouin zone. Magnetic ordering appears to be coupled only weakly with a volume strain and not with shear strain but, as with multiferroic PZT–PFN perovskites, takes place within crystals which have significant strain heterogeneities on different length scales.