Jason Smucny
Anschutz Medical Campus
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason Smucny.
Trends in Pharmacological Sciences | 2014
Jason Smucny; Korey P. Wylie; Jason R. Tregellas
Developing translational biomarkers is a priority for psychiatry research. Task-independent functional brain imaging is a relatively novel technique that allows examination of the brains intrinsic networks, defined as functionally and (often) structurally connected populations of neurons whose properties reflect fundamental neurobiological organizational principles of the central nervous system. The ability to study the activity and organization of these networks has opened a promising new avenue for translational investigation, because they can be analogously examined across species and disease states. Interestingly, imaging studies have revealed shared spatial and functional characteristics of the intrinsic network architecture of the brain across species, including mice, rats, non-human primates, and humans. Using schizophrenia as an example, we show how intrinsic networks may show similar abnormalities in human diseases and animal models of these diseases, supporting their use as biomarkers in drug development.
Schizophrenia Research | 2013
Jason Smucny; Ann Olincy; Lindsay C. Eichman; Emma Lyons; Jason R. Tregellas
Patients with schizophrenia frequently report difficulties paying attention during important tasks, because they are distracted by noise in the environment. The neurobiological mechanism underlying this problem is, however, poorly understood. The goal of this study was to determine if early sensory processing deficits contribute to sensitivity to distracting noise in schizophrenia. To that end, we examined the effect of environmentally relevant distracting noise on performance of an attention task in 19 patients with schizophrenia and 22 age and gender-matched healthy comparison subjects. Using electroencephalography, P50 auditory gating ratios also were measured in the same subjects and were examined for their relationship to noise-induced changes in performance on the attention task. Positive symptoms also were evaluated in patients. Distracting noise caused a greater increase in reaction time in patients, relative to comparison subjects, on the attention task. Higher P50 auditory gating ratios also were observed in patients. P50 gating ratio significantly correlated with the magnitude of noise-induced increase in reaction time. Noise-induced increase in reaction time was associated with delusional thoughts in patients. P50 ratios were associated with delusional thoughts and hallucinations in patients. In conclusion, the observation of noise effects on attention in patients is consistent with subjective reports from patients. The observed relationship between noise effects on reaction time and P50 auditory gating supports the hypothesis that early inhibitory processing deficits may contribute to susceptibility to distraction in the illness.
Appetite | 2012
Jason Smucny; Marc-Andre Cornier; Lindsay C. Eichman; Elizabeth A. Thomas; Jamie L. Bechtell; Jason R. Tregellas
The neurobiology of obesity is poorly understood. Here we report findings of a study designed to examine the differences in brain regional gray matter volume in adults recruited as either Obese Prone or Obese Resistant based on self-identification, body mass index, and personal/family weight history. Magnetic resonance imaging was performed in 28 Obese Prone (14 male, 14 female) and 25 Obese Resistant (13 male, 12 female) healthy adults. Voxel-based morphometry was used to identify gray matter volume differences between groups. Gray matter volume was found to be lower in the insula, medial orbitofrontal cortex and cerebellum in Obese Prone, as compared to Obese Resistant individuals. Adjusting for body fat mass did not impact these results. Insula gray matter volume was negatively correlated with leptin concentration and measures of hunger. These findings suggest that individuals at risk for weight gain have structural differences in brain regions known to be important in energy intake regulation, and that these differences, particularly in the insula, may be related to leptin.
Brain and Cognition | 2013
Jason Smucny; Donald C. Rojas; Lindsay C. Eichman; Jason R. Tregellas
Selective attention in the presence of distraction is a key aspect of healthy cognition. The underlying neurobiological processes, have not, however, been functionally well characterized. In the present study, we used functional magnetic resonance imaging to determine how ecologically relevant distracting noise affects cortical activity in 27 healthy adults during two versions of the visual Sustained Attention To Response Task (SART) that differ in difficulty (and thus attentional load). A significant condition (noise or silence) by task (easy or difficult) interaction was observed in several areas, including dorsolateral prefrontal cortex (DLPFC), fusiform gyrus (FG), posterior cingulate (PCC), and pre-supplementary motor area (PreSMA). Post hoc analyses of interaction effects revealed deactivation of DLPFC, PCC, and PreSMA during distracting noise under conditions of low attentional load, and activation of FG and PCC during distracting noise under conditions of high attentional load. These results suggest that distracting noise may help alert subjects to task goals and reduce demands on cortical resources during tasks of low difficulty and attentional load. Under conditions of higher load, however, additional cognitive resources may be required in the presence of noise.
Movement Disorders | 2016
Brian D. Berman; Jason Smucny; Korey P. Wylie; Erika Shelton; Eugene Kronberg; Maureen A. Leehey; Jason R. Tregellas
PD is associated with disrupted connectivity to a large number of distributed brain regions. How the disease alters the functional topological organization of the brain, however, remains poorly understood. Furthermore, how levodopa modulates network topology in PD is largely unknown. The objective of this study was to use resting‐state functional MRI and graph theory to determine how small‐world architecture is altered in PD and affected by levodopa administration.
Translational Psychiatry | 2015
Jason Smucny; Karen E. Stevens; Ann Olincy; Jason R. Tregellas
Impaired gating of the auditory evoked P50 potential is one of the most pharmacologically well-characterized features of schizophrenia. This deficit is most commonly modeled in rodents by implanted electrode recordings from the hippocampus of the rodent analog of the P50, the P20–N40. The validity and effectiveness of this tool, however, has not been systematically reviewed. Here, we summarize findings from studies that have examined the effects of pharmacologic modulation on gating of the rodent hippocampal P20–N40 and the human P50. We show that drug effects on the P20–N40 are highly predictive of human effects across similar dose ranges. Furthermore, mental status (for example, anesthetized vs alert) does not appear to diminish the predictive capacity of these recordings. We then discuss hypothesized neuropharmacologic mechanisms that may underlie gating effects for each drug studied. Overall, this review supports continued use of hippocampal P20–N40 gating as a translational tool for schizophrenia research.
Frontiers in Psychiatry | 2015
Jason Smucny; Adrienne Visani; Jason R. Tregellas
Despite the fact that cognitive function is the best predictor of functional outcome and quality of life in schizophrenia (1), cognitive symptoms remain poorly treated in the illness. A myriad of cognitive domains are affected, including selective and sustained attention, working memory, episodic memory, processing speed, executive function, and social cognition (2). Patients consequently suffer from high unemployment rates (80%) and most are unable to live independently (30%) (3). Clearly, new treatments are needed.
Psychiatry Research-neuroimaging | 2013
Jason Smucny; Korey P. Wylie; Donald C. Rojas; Karen E. Stevens; Ann Olincy; Eugene Kronberg; Lijun Zheng; Jason R. Tregellas
Thorough analysis of translational endophenotypes is needed to improve therapeutic development in schizophrenia. Abnormal sensory gating, one such endophenotype, is associated with reduced expression of the α7 nicotinic receptor. However, typical gating measures such as the P50 evoked response are often low-pass filtered, and it is unclear how α7 expression affects gating at higher frequencies. Therefore, this study used time-frequency analysis to compare sensory gating at the beta and gamma frequencies between human patients and healthy controls as well as between α7 heterozygote mutant mice and wild-type. Gating of total beta (15-26Hz) and gamma (30-50Hz) power during paired clicks was assessed from mouse in vivo hippocampal CA3 recordings. Gating was also assessed in schizophrenia patients and healthy controls using electroencephalography. Relative to wild-type, α7 heterozygote mice showed impaired gating of total beta and gamma power. Similarly, relative to controls, patients showed impaired gating of total beta and gamma power. Poor beta gating was associated with negative symptoms. These results demonstrate that schizophrenia patients and α7 heterozygote mice show similar deficits in gating high frequency power. Time-frequency analysis of beta and gamma gating may thus be a translational method of assessing the genetic basis of gating deficits in schizophrenia.
Human Brain Mapping | 2016
Jason Smucny; Ann Olincy; Donald C. Rojas; Jason R. Tregellas
Although nicotine has been shown to improve attention deficits in schizophrenia, the neurobiological mechanisms underlying this effect are poorly understood. We hypothesized that nicotine would modulate attention‐associated neuronal response in schizophrenia patients in the ventral parietal cortex (VPC), hippocampus, and anterior cingulate based on previous findings in control subjects. To test this hypothesis, the present study examined response in these regions in a cohort of nonsmoking patients and healthy control subjects using an auditory selective attention task with environmental noise distractors during placebo and nicotine administration. In agreement with our hypothesis, significant diagnosis (Control vs. Patient) X drug (Placebo vs. Nicotine) interactions were observed in the VPC and hippocampus. The interaction was driven by task‐associated hyperactivity in patients (relative to healthy controls) during placebo administration, and decreased hyperactivity in patients after nicotine administration (relative to placebo). No significant interaction was observed in the anterior cingulate. Task‐associated hyperactivity of the VPC predicted poor task performance in patients during placebo. Poor task performance also predicted symptoms in patients as measured by the Brief Psychiatric Rating Scale. These results are the first to suggest that nicotine may modulate brain activity in a selective attention‐dependent manner in schizophrenia. Hum Brain Mapp 37:410–421, 2016.
PLOS ONE | 2013
Jason Smucny; Donald C. Rojas; Lindsay C. Eichman; Jason R. Tregellas
Sensory flooding, particularly during auditory stimulation, is a common problem for patients with schizophrenia. The functional consequences of this impairment during cross-modal attention tasks, however, are unclear. The purpose of this study was to examine how auditory distraction differentially affects task-associated response during visual attention in patients and healthy controls. To that end, 21 outpatients with schizophrenia and 23 healthy comparison subjects performed a visual attention task in the presence or absence of distracting, environmentally relevant “urban” noise while undergoing functional magnetic resonance imaging at 3T. The task had two conditions (difficult and easy); task-related neural activity was defined as difficult – easy. During task performance, a significant distraction (noise or silence) by group (patient or control) interaction was observed in the left dorsolateral prefrontal cortex, right hippocampus, left temporoparietal junction, and right fusiform gyrus, with patients showing relative hypoactivation during noise compared to controls. In patients, the ability to recruit the dorsolateral prefrontal cortex during the task in noise was negatively correlated with the effect of noise on reaction time. Clinically, the ability to recruit the fusiform gyrus during the task in noise was negatively correlated with SANS affective flattening score, and hippocampal recruitment during the task in noise was positively correlated with global functioning. In conclusion, schizophrenia may be associated with abnormalities in neural response during visual attention tasks in the presence of cross-modal noise distraction. These response differences may predict global functioning in the illness, and may serve as a biomarker for therapeutic development.