Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Stevens is active.

Publication


Featured researches published by Jason Stevens.


Plant and Soil | 2003

Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake

Erik J. Veneklaas; Jason Stevens; Gregory R. Cawthray; Stephen Turner; Alasdair M. Grigg; Hans Lambers

Chickpea and white lupin roots are able to exude large amounts of carboxylates, but the resulting concentrations in the rhizosphere vary widely. We grew chickpea in pots in eleven different Western Australian soils, all with low phosphorus concentrations. While final plant mass varied more than two-fold and phosphorus content almost five-fold, there were only minor changes in root morphological traits that potentially enhance phosphorus uptake (e.g., the proportion of plant mass allocated to roots, or the length of roots per unit root mass). In contrast, the concentration of carboxylates (mainly malonate, citrate and malate, extracted using a 0.2 mM CaCl2 solution) varied ten-fold (averaging 2.3 μmol g−1 dry rhizosphere soil, approximately equivalent to a soil solution concentration of 23 mM). Plant phosphorus uptake was positively correlated with the concentration of carboxylates in the rhizosphere, and it was consistently higher in soils with a smaller capacity to sorb phosphorus. Phosphorus content was not correlated with bicarbonate-extractable phosphorus or any other single soil trait. These results suggest that exuded carboxylates increased the availability of phosphorus to the plant, however, the factors that affected root exudation rates are not known. When grown in the same six soils, three commonly used Western Australian chickpea cultivars had very similar rhizosphere carboxylate concentrations (extracted using a 0.2 mM CaCl2 solution), suggesting that there is little genetic variation for this trait in chickpea. Variation in the concentration of carboxylates in the rhizosphere of white lupin did not parallel that of chickpea across the six soils. However, in both species the proportion of citrate decreased and that of malate increased at lower soil pH. We conclude that patterns of variation in root exudates need to be understood to optimise the use of this trait in enhancing crop phosphorus uptake.


Plant Physiology | 2008

Karrikins Discovered in Smoke Trigger Arabidopsis Seed Germination by a Mechanism Requiring Gibberellic Acid Synthesis and Light

David C. Nelson; Julie Anne Riseborough; Gavin R. Flematti; Jason Stevens; Emilio L. Ghisalberti; Kingsley W. Dixon; Steven M. Smith

Discovery of the primary seed germination stimulant in smoke, 3-methyl-2H-furo[2,3-c]pyran-2-one (KAR1), has resulted in identification of a family of structurally related plant growth regulators, karrikins. KAR1 acts as a key germination trigger for many species from fire-prone, Mediterranean climates, but a molecular mechanism for this response remains unknown. We demonstrate that Arabidopsis (Arabidopsis thaliana), an ephemeral of the temperate northern hemisphere that has never, to our knowledge, been reported to be responsive to fire or smoke, rapidly and sensitively perceives karrikins. Thus, these signaling molecules may have greater significance among angiosperms than previously realized. Karrikins can trigger germination of primary dormant Arabidopsis seeds far more effectively than known phytohormones or the structurally related strigolactone GR-24. Natural variation and depth of seed dormancy affect the degree of KAR1 stimulation. Analysis of phytohormone mutant germination reveals suppression of KAR1 responses by abscisic acid and a requirement for gibberellin (GA) synthesis. The reduced germination of sleepy1 mutants is partially recovered by KAR1, which suggests that germination enhancement by karrikin is only partly DELLA dependent. While KAR1 has little effect on sensitivity to exogenous GA, it enhances expression of the GA biosynthetic genes GA3ox1 and GA3ox2 during seed imbibition. Neither abscisic acid nor GA levels in seed are appreciably affected by KAR1 treatment prior to radicle emergence, despite marked differences in germination outcome. KAR1 stimulation of Arabidopsis germination is light-dependent and reversible by far-red exposure, although limited induction of GA3ox1 still occurs in the dark. The observed requirements for light and GA biosynthesis provide the first insights into the karrikin mode of action.


Annals of Botany | 2011

Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide

Rowena L. Long; Jason Stevens; Erin M. Griffiths; Markus Adamek; Marta J. Gorecki; Stephen B. Powles; David J. Merritt

BACKGROUND AND AIMS Karrikinolide (KAR(1)) is a smoke-derived chemical that can trigger seeds to germinate. A potential application for KAR(1) is for synchronizing the germination of weed seeds, thereby enhancing the efficiency of weed control efforts. Yet not all species germinate readily with KAR(1), and it is not known whether seemingly non-responsive species can be induced to respond. Here a major agronomic weed family, the Brassicaceae, is used to test the hypothesis that a stimulatory response to KAR(1) may be present in physiologically dormant seeds but may not be expressed under all circumstances. METHODS Seeds of eight Brassicaceae weed species (Brassica tournefortii, Raphanus raphanistrum, Sisymbrium orientale, S. erysimoides, Rapistrum rugosum, Lepidium africanum, Heliophila pusilla and Carrichtera annua) were tested for their response to 1 µm KAR(1) when freshly collected and following simulated and natural dormancy alleviation, which included wet-dry cycling, dry after-ripening, cold and warm stratification and a 2 year seed burial trial. KEY RESULTS Seven of the eight Brassicaceae species tested were stimulated to germinate with KAR(1) when the seeds were fresh, and the remaining species became responsive to KAR(1) following wet-dry cycling and dry after-ripening. Light influenced the germination response of seeds to KAR(1), with the majority of species germinating better in darkness. Germination with and without KAR(1) fluctuated seasonally throughout the seed burial trial. CONCLUSIONS KAR(1) responses are more complex than simply stating whether a species is responsive or non-responsive; light and temperature conditions, dormancy state and seed lot all influence the sensitivity of seeds to KAR(1), and a response to KAR(1) can be induced. Three response types for generalizing KAR(1) responses are proposed, namely inherent, inducible and undetected. Given that responses to KAR(1) were either inherent or inducible in all 15 seed lots included in this study, the Brassicaceae may be an ideal target for future application of KAR(1) in weed management.


Annals of Botany | 2010

Prior hydration of Brassica tournefortii seeds reduces the stimulatory effect of karrikinolide on germination and increases seed sensitivity to abscisic acid

Rowena L. Long; Kimberlyn Williams; Erin M. Griffiths; Gavin R. Flematti; David J. Merritt; Jason Stevens; Shane R. Turner; Stephen B. Powles; Kingsley W. Dixon

BACKGROUND AND AIMS The smoke-derived compound karrikinolide (KAR(1)) shows significant potential as a trigger for the synchronous germination of seeds in a variety of plant-management contexts, from weed seeds in paddocks, to native seeds when restoring degraded lands. Understanding how KAR(1) interacts with seed physiology is a necessary precursor to the development of the compound as an efficient and effective management tool. This study tested the ability of KAR(1) to stimulate germination of seeds of the global agronomic weed Brassica tournefortii, at different hydration states, to gain insight into how the timing of KAR(1) applications in the field should be managed relative to rain events. METHODS Seeds of B. tournefortii were brought to five different hydration states [equilibrated at 15 % relative humidity (RH), 47 % RH, 96 % RH, fully imbibed, or re-dried to 15 % RH following maximum imbibition] then exposed to 1 nm or 1 microm KAR(1) for one of five durations (3 min, 1 h, 24 h, 14 d or no exposure). KEY RESULTS Dry seeds with no history of imbibition were the most sensitive to KAR(1); sensitivity was lower in seeds that were fully imbibed or fully imbibed then re-dried. In addition, reduced sensitivity to KAR(1) was associated with an increased sensitivity to exogenously applied abscisic acid (ABA). CONCLUSIONS Seed water content and history of imbibition were found to significantly influence whether seeds germinate in response to KAR(1). To optimize the germination response of seeds, KAR(1) should be applied to dry seeds, when sensitivity to ABA is minimized.


Australian Journal of Botany | 2011

Detecting karrikinolide responses in seeds of the Poaceae

Rowena L. Long; Jason Stevens; Erin M. Griffiths; Markus Adamek; Stephen B. Powles; David J. Merritt

The smoke-derived chemical karrikinolide commonly triggers seeds in the Brassicaceae, Solanaceae and Asteraceae families to germinate, yet species in the Poaceae – another major understorey and weed family – have responded to the chemical with mixed results. This study aimed to understand why some grass species respond to karrikinolide while others do not. Using a field-based seed-burial trial, dose-response experiment, and stratification experiment, we investigated whether karrikinolide could alleviate dormancy and trigger seeds to germinate for seven global agronomic weeds: Avena fatua L., Lolium rigidum Gaudin, Eragrostis curvula (Schrad.) Nees, Phalaris minor Retz., Hordeum glaucum Steud., Ehrharta calycina Sm. and Bromus diandrus Roth. Seeds of A. fatua were consistently stimulated to germinate with karrikinolide in all experiments, whether seeds were freshly collected or dormancy had been partially alleviated. In contrast, seeds of L. rigidum failed to respond to karrikinolide when the seeds were fresh, after-ripened in the laboratory, and even during natural dormancy loss in the field. Interestingly, although karrikinolide did not stimulate freshly collected E. curvula seeds to germinate, it hastened dormancy loss when applied during stratification. These findings are helpful for understanding the responses of grass species following fire. They also contribute to a growing body of research aimed at using karrikinolide as a tool for triggering uniform germination of seeds for enhancing restoration efforts and depleting the weed seed bank.


Journal of Applied Ecology | 2017

Increasing the germination envelope under water stress improves seedling emergence in two dominant grass species across different pulse rainfall events

Wolfgang Lewandrowski; Todd E. Erickson; Kingsley W. Dixon; Jason Stevens

Summary 1.Demographic recruitment processes, such as seed germination and seedling emergence, are critical transitional phases to the re-establishment of degraded plant populations, but often fail due to rainfall not supporting plant requirements. Using species from the widespread arid Australian perennial grass genus Triodia, we investigated the interactions of seeds in different dormancy states and their functional germination envelope in response to water stress after simulated pulse rainfall events. 2.Seed dormancy was alleviated in Triodia species to varying degrees by wet/ dry cycling or by removing floret structures from seeds. The seeds were then exposed to different rainfall frequency and quantity events mimicking the 25th, median, 75th and 95th percentile rainfall events found in natural habitats for the study species in the north-west Australian arid zone. 3.Under 95th percentile rainfall conditions recruitment was highest, but still limited to 35% germination and 10% emergence of cleaned seeds (i.e. the least dormant state evaluated). This was related to the functional germination envelope as indicated by more negative base water potential thresholds (Ψb50) for cleaned seeds (≥ -0.33 MPa) compared to intact florets (≥ -0.26 MPa). As a result the maximum cumulative time where soil water potentials were optimal for germination (Ψsoil ≥ Ψb50) were 1.6–2.6 times longer for cleaned seeds in large frequent rainfall events when compared to intact florets. Furthermore, seed dormancy, that usually prolongs seed survival, was linked to a short-term reduction in seed viability, which may further reduce recruitment rates. 4.Synthesis and applications. Our findings indicate that large frequent rainfall events raised soil water potentials above critical thresholds for germination and are important for successful plant establishment. If recruitment bottlenecks are a result of seed dormancy and variable rainfall for arid grass species, then this study shows benefits for alleviating seed dormancy prior to seeding in restoration sites, as this increases the environmental envelope for germination. This article is protected by copyright. All rights reserved.


Annals of Botany | 2012

Parental environment changes the dormancy state and karrikinolide response of Brassica tournefortii seeds

Marta J. Gorecki; Rowena Long; Gavin R. Flematti; Jason Stevens

BACKGROUND AND AIMS The smoke-derived chemical karrikinolide (KAR(1)) shows potential as a tool to synchronize the germination of seeds for weed management and restoration. To assess its feasibility we need to understand why seeds from different populations of a species exhibit distinct responses to KAR(1). Environmental conditions during seed development, known as the parental environment, influence seed dormancy so we predicted that parental environment would also drive the KAR(1)-responses of seeds. Specifically, we hypothesized that (a) a common environment will unify the KAR(1)-responses of different populations, (b) a single population grown under different environmental conditions will exhibit different KAR(1)-responses, and (c) drought stress, as a particular feature of the parental environment, will make seeds less dormant and more responsive to KAR(1). METHODS Seeds of the weed Brassica tournefortii were collected from four locations in Western Australia and were sown in common gardens at two field sites, to test whether their KAR(1)-responses could be unified by a common environment. To test the effects of drought on KAR(1)-response, plants were grown in a glasshouse and subjected to water stress. For each trial, the germination responses of the next generation of seeds were assessed. KEY RESULTS The KAR(1)-responses of seeds differed among populations, but this variation was reduced when seeds developed in a common environment. The KAR(1)-responses of each population changed when seeds developed in different environments. Different parental environments affected germination responses of the populations differently, showing that parental environment interacts with genetics to determine KAR(1)-responses. Seeds from droughted plants were 5 % more responsive to KAR(1) and 5 % less dormant than seeds from well-watered plants, but KAR(1)-responses and dormancy state were not intrinsically linked in all experiments. CONCLUSIONS The parental environment in which seeds develop is one of the key drivers of the KAR(1)-responses of seeds.


Trends in Plant Science | 2017

Seed Coating: Science or Marketing Spin?

Simone Pedrini; David J. Merritt; Jason Stevens; Kingsley W. Dixon

Seed coating is the practice of covering seeds with external materials to improve handling, protection, and, to a lesser extent, germination enhancement and plant establishment. With an annual value exceeding US


Crop & Pasture Science | 2006

Enhancing the germination of three fodder shrubs (Atriplex amnicola, A.nummularia, A. undulata; Chenopodiaceae): implications for the optimisation of field establishment

Jason Stevens; Edward G. Barrett-Lennard; Kingsley W. Dixon

1 billion dollars, this technology is mostly the preserve of the private research sector, with few links to the scientific community. Here, we analyse the science and industry of seed coating and its contribution to seed establishment and plant performance. We posit that a closer collaboration between academia and industry is critical to realising the potential of seed coating both as a tool for enhancing plant establishment in the face of the challenges posed to agricultural systems and to propel the multibillion-dollar global push for ecological restoration of degraded ecosystems.


Functional Plant Biology | 2014

Seedling mortality during biphasic drought in sandy Mediterranean soils

Stephen M. Benigno; Kingsley W. Dixon; Jason Stevens

Saltbush (Atriplex) species are widely grown in Australia as saltland pastures. Direct seeding practices for saltbush currently result in asynchronous and unreliable seedling establishment (5% successful establishment is not uncommon from field-sown seed). In part this may stem from a limited understanding of Atriplex seed germination requirements. This paper presents findings with 3 Atriplex species, A. amnicola (Paul G. Wilson.), A. nummularia (Lindl.), and A. undulata (D. Dietr), each of which differs in germination characteristics. For A. amnicola, the presence of light (and artificial substitution of light by 1000 ppm gibberellic acid) improved germination under controlled conditions and resulted in a 4-fold increase (70% total emergence) in field emergence of seedlings. For A. undulata, removing bracteoles increased germination under controlled conditions (~15%), with a 1.5-fold improvement in field seedling emergence (55% final emergence); however, seed priming or gibberellic acid application had no significant effect. In contrast, for A. nummularia, bracteole removal and light had minor positive effects on germination under controlled conditions, but this did not translate into improved emergence in soil or in the field. Under –0.5 MPa NaCl stress, application of gibberellic acid, salicylic acid, or kinetin to the germination medium significantly increased the final germination percentage of A. amnicola seeds (58, 16, and 14%, respectively) and improved the rate at which seeds germinated. All plant signalling compounds significantly increased final germination percentage and germination rate of A. undulata, albeit with a <10% increase at –0.5 MPa NaCl. Priming seeds with plant signalling compounds had similar effects on seed germination under low water potentials compared to direct treatment of the germination media. The effects of seed priming on Atriplex seedling emergence from saline soils varied among species. Priming with water significantly increased emergence percentage of A. amnicola but had no effect on A. nummularia and A. undulata. Gibberellic acid improved A. amnicola germination parameters only, whereas salicylic acid and kinetin improved the rate of emergence in all 3 species at various levels of salinity. This study suggests that a basic understanding of seed dormancy and germination requirements has the potential to substantially improve field emergence of saltbush species.

Collaboration


Dive into the Jason Stevens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Merritt

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Lewandrowski

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Ben P. Miller

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Gavin R. Flematti

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Erin M. Griffiths

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Shane R. Turner

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Todd E. Erickson

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Bunn

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge