Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Stretton is active.

Publication


Featured researches published by Jason Stretton.


Neurology | 2012

Altered microstructural connectivity in juvenile myoclonic epilepsy: The missing link

Christian Vollmar; Jonathan O'Muircheartaigh; Mark R. Symms; Gareth J. Barker; Pamela J. Thompson; Veena Kumari; Jason Stretton; John S. Duncan; Mark P. Richardson; Matthias J. Koepp

Objectives: Juvenile myoclonic epilepsy (JME) is characterized by myoclonic jerks of the upper limbs, often triggered by cognitive stressors. Here we aim to reconcile this particular seizure phenotype with the known frontal lobe type neuropsychological profile, photosensitivity, hyperexcitable motor cortex, and recent advanced imaging studies that identified abnormal functional connectivity of the motor cortex and supplementary motor area (SMA). Methods: We acquired fMRI and diffusion tensor imaging (DTI) in a cohort of 29 patients with JME and 28 healthy control subjects. We used fMRI to determine functional connectivity and DTI-based region parcellation and voxel-wise comparison of probabilistic tractography data to assess the structural connectivity profiles of the mesial frontal lobe. Results: Patients with JME showed alterations of mesial frontal connectivity with increased structural connectivity between the prefrontal cognitive cortex and motor cortex. We found a positive correlation between DTI and fMRI-based measures of structural and functional connectivity: the greater the structural connectivity between these 2 regions, the greater the observed functional connectivity of corresponding areas. Furthermore, connectivity was reduced between prefrontal and frontopolar regions and increased between the occipital cortex and the SMA. Conclusion: The observed alterations in microstructural connectivity of the mesial frontal region may represent the anatomic basis for cognitive triggering of motor seizures in JME. Changes in the mesial frontal connectivity profile provide an explanatory framework for several other clinical observations in JME and may be the link between seizure semiology, neurophysiology, neuropsychology, and imaging findings in JME.


Epilepsy Research | 2012

Frontal lobe function in temporal lobe epilepsy.

Jason Stretton; Pamela J. Thompson

Summary Temporal lobe epilepsy (TLE) is typically associated with long-term memory dysfunction. The frontal lobes support high-level cognition comprising executive skills and working memory that is vital for daily life functioning. Deficits in these functions have been increasingly reported in TLE. Evidence from both the neuropsychological and neuroimaging literature suggests both executive function and working memory are compromised in the presence of TLE. In relation to executive impairment, particular focus has been paid to set shifting as measured by the Wisconsin Card Sorting Task. Other discrete executive functions such as decision-making and theory of mind also appear vulnerable but have received little attention. With regard to working memory, the medial temporal lobe structures appear have a more critical role, but with emerging evidence of hippocampal dependent and independent processes. The relative role of underlying pathology and seizure spread is likely to have considerable bearing upon the cognitive phenotype and trajectory in TLE. The identification of the nature of frontal lobe dysfunction in TLE thus has important clinical implications for prognosis and surgical management. Longitudinal neuropsychological and neuroimaging studies assessing frontal lobe function in TLE patients pre- and postoperatively will improve our understanding further.


Annals of Neurology | 2012

Optic radiation tractography and vision in anterior temporal lobe resection

Gavin P. Winston; Pankaj Daga; Jason Stretton; Marc Modat; Mark R. Symms; Andrew W. McEvoy; Sebastien Ourselin; John S. Duncan

Anterior temporal lobe resection (ATLR) is an effective treatment for refractory temporal lobe epilepsy but may result in a contralateral superior visual field deficit (VFD) that precludes driving in the seizure‐free patient. Diffusion tensor imaging (DTI) tractography can delineate the optic radiation preoperatively and stratify risk. It would be advantageous to incorporate display of tracts into interventional magnetic resonance imaging (MRI) to guide surgery.


Epilepsia | 2011

Connectivity of the supplementary motor area in juvenile myoclonic epilepsy and frontal lobe epilepsy

S Vulliemoz; Christian Vollmar; Matthias J. Koepp; M Yogarajah; Jonathan O'Muircheartaigh; David W. Carmichael; Jason Stretton; Mark P. Richardson; Mark R. Symms; John S. Duncan

Purpose:  Subtle structural abnormalities of frontal lobe gray and white matter have been described in cryptogenic frontal lobe and idiopathic generalized epilepsies. The supplementary motor area (SMA) has a role in motor control, and its involvement during frontal lobe epileptic seizures is characterized by a typical asymmetric tonic posturing. Moreover, motor networks are dysfunctional in juvenile myoclonic epilepsy (JME). We tested the hypothesis that SMA structural connectivity is altered in focal frontal lobe epilepsy (FLE) and JME compared to healthy controls.


Brain | 2013

A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy

Meneka K. Sidhu; Jason Stretton; Gavin P. Winston; S Bonelli; Maria Centeno; Christian Vollmar; Mark R. Symms; Pamela J. Thompson; Matthias J. Koepp; John S. Duncan

Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment.


Epilepsy Research | 2011

Hippocampal activation correlates with visual confrontation naming: fMRI findings in controls and patients with temporal lobe epilepsy

S Bonelli; R Powell; Pamela J. Thompson; M Yogarajah; Niels K. Focke; Jason Stretton; Christian Vollmar; Mark R. Symms; Cathy J. Price; John S. Duncan; Matthias J. Koepp

Summary Purpose In patients with left temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS) decreased naming ability is common, suggesting a critical role for the medial left temporal lobe in this task. We investigated the integrity of language networks with functional MRI (fMRI) in controls and TLE patients. Experimental design We performed an fMRI verbal fluency paradigm in 22 controls and 66 patients with unilateral mesial TLE (37 left HS, 29 right HS). Verbal fluency and naming ability were investigated as part of the standard presurgical neuropsychological assessment. Naming ability was assessed using a visual confrontation naming test. Results Left TLE patients had significantly lower naming scores than controls and those with right TLE. Right TLE patients performed less well than controls, but better than those with left TLE. Left TLE had significantly lower scores for verbal fluency than controls. In controls and right TLE, left hippocampal activation during the verbal fluency task was significantly correlated with naming, characterised by higher scores in subjects with greater hippocampal fMRI activation. In left TLE no correlation with naming scores was seen in the left hippocampus, but there was a significant correlation in the left middle and inferior frontal gyri, not observed in controls and right TLE. In left and right TLE, out of scanner verbal fluency scores significantly correlated with fMRI activation for verbal fluency in the left middle and inferior frontal gyri. Conclusion Good confrontation naming ability depends on the integrity of the hippocampus and the connecting fronto-temporal networks. Functional MRI activation in the left hippocampus during verbal fluency is associated with naming function in healthy controls and patients with right TLE. In left TLE, there was evidence of involvement of the left frontal lobe when naming was more proficient, most likely reflecting a compensatory response due to the ongoing epileptic activity and/or underlying pathology.


NeuroImage | 2012

Neural correlates of working memory in Temporal Lobe Epilepsy — An fMRI study

Jason Stretton; Gavin P. Winston; Meneka K. Sidhu; Maria Centeno; Christian Vollmar; S Bonelli; Mark R. Symms; Matthias J. Koepp; John S. Duncan; Pamela J. Thompson

It has traditionally been held that the hippocampus is not part of the neural substrate of working memory (WM), and that WM is preserved in Temporal Lobe Epilepsy (TLE). Recent imaging and neuropsychological data suggest this view may need revision. The aim of this study was to investigate the neural correlates of WM in TLE using functional MRI (fMRI). We used a visuo-spatial ‘n-back’ paradigm to compare WM network activity in 38 unilateral hippocampal sclerosis (HS) patients (19 left) and 15 healthy controls. WM performance was impaired in both left and right HS groups compared to controls. The TLE groups showed reduced right superior parietal lobe activity during single- and multiple-item WM. No significant hippocampal activation was found during the active task in any group, but the hippocampi progressively deactivated as the task demand increased. This effect was bilateral for controls, whereas the TLE patients showed progressive unilateral deactivation only contralateral to the side of the hippocampal sclerosis and seizure focus. Progressive deactivation of the posterior medial temporal lobe was associated with better performance in all groups. Our results suggest that WM is impaired in unilateral HS and the underlying neural correlates of WM are disrupted. Our findings suggest that hippocampal activity is progressively suppressed as the WM load increases, with maintenance of good performance. Implications for understanding the role of the hippocampus in WM are discussed.


Epilepsy Research | 2013

The effect of topiramate on cognitive fMRI

Clarissa Lin Yasuda; Maria Centeno; Christian Vollmar; Jason Stretton; Mark R. Symms; Fernando Cendes; Mitul A. Mehta; Pamela J. Thompson; John S. Duncan; Matthias J. Koepp

Summary Purpose Topiramate (TPM) is known to cause language impairment in healthy volunteers and patients with epilepsy. We assessed the effects of TPM on functional language networks in both patients with focal epilepsies and healthy controls using functional magnetic resonance imaging (fMRI). Methods We obtained fMRI data in 24 controls and 35 patients with frontal lobe epilepsy using a simple verbal fluency (VF) paradigm. Eight of the 35 patients were treated with TPM in polytherapy. We compared cognitive task related activations and de-activations in patients taking TPM with patients taking other AEDs and healthy controls. In a longitudinal pilot study with VF-fMRI paradigm, we studied two patients with focal epilepsies twice, prior to starting and on stable doses of TPM, two patients twice, before and after tapering TPM completely and two healthy controls twice, before and after single doses of 200 mg TPM. Key findings Cross sectional analyses of VF-fMRI showed a reduction in the task-related deactivation of the default mode network (DMN) in patients taking TPM. The longitudinal study corroborated these findings as both chronic administration and a single dose of TPM were associated with impaired categorical verbal fluency and disruption of task-related deactivations. Significance Similar neuropsychological and fMRI findings in patients and healthy controls indicate a specific effect of TPM in default mode network areas that may be essential components of the language network. Our preliminary data suggest a mechanism by which TPM impairs cognitive processing during language function and highlights the sensitivity of fMRI to detect the effects of AEDs on cognitive brain networks.


Epilepsia | 2013

Structural correlates of impaired working memory in hippocampal sclerosis

Gavin P. Winston; Jason Stretton; Meneka K. Sidhu; Mark R. Symms; Pamela J. Thompson; John S. Duncan

Temporal lobe epilepsy (TLE) has been considered to impair long‐term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored.


Epilepsy Research | 2011

Diffusion tensor imaging tractography of the optic radiation for epilepsy surgical planning: A comparison of two methods

Gavin P. Winston; Laura Mancini; Jason Stretton; Jonathan Ashmore; Mark R. Symms; John S. Duncan; Tarek A. Yousry

Summary The optic radiation is a key white matter structure at risk during epilepsy surgery involving the temporal, parietal or occipital lobes. It shows considerable anatomical variability, cannot be delineated on clinical MRI sequences and damage may cause a disabling visual field deficit. Diffusion tensor imaging tractography allows non-invasive mapping of this pathway. Numerous methods have been published but direct comparison is difficult as patient, acquisition and analysis parameters differ. Two methods for delineating the optic radiation were applied to 6 healthy controls and 4 patients with epileptogenic lesions near the optic radiation. By comparing methods with the same datasets, many of the parameters could be controlled. The first method was previously developed to accurately identify Meyers loop for planning anterior temporal lobe resection. The second aimed to address limitations of this method by using a more automated technique to reduce operator time and to depict the entire optic radiation. Whilst the core of the tract was common to both methods, there was significant variability between the methods. Method 1 gave a more consistent depiction of Meyers loop with fewer spurious tracts. Method 2 gave a better depiction of the entire optic radiation, particularly in more posterior portions, but did not identify Meyers loop in one patient. These results show that whilst tractography is a promising technique, there is significant variability depending on the method chosen even when the majority of parameters are fixed. Different methods may need to be chosen for surgical planning depending on the individual clinical situation.

Collaboration


Dive into the Jason Stretton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias J. Koepp

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gavin P. Winston

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Meneka K. Sidhu

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Mark R. Symms

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Maria Centeno

University College London

View shared research outputs
Top Co-Authors

Avatar

S Bonelli

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge