Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Tallis is active.

Publication


Featured researches published by Jason Tallis.


Journal of Applied Physiology | 2012

The effect of physiological concentrations of caffeine on the power output of maximally and submaximally stimulated mouse EDL (fast) and soleus (slow) muscle.

Jason Tallis; Rob S. James; Val M. Cox; Michael J. Duncan

The ergogenic effects of caffeine in human exercise have been shown to improve endurance and anaerobic exercise performance. Previous work has demonstrated that 70 μM caffeine (physiological maximum) can directly increase mouse extensor digitorum longus (EDL) muscle power output (PO) in sprintlike activity by 3%. Our study used the work loop technique on isolated mouse muscles to investigate whether the direct effect of 70 μM caffeine on PO differed between 1) maximally and submaximally activated muscle; 2) relatively fast (EDL) and relatively slow (soleus) muscles; and 3) caffeine concentrations. Caffeine treatment of 70 μM resulted in significant improvements in PO in maximally and submaximally activated EDL and soleus (P < 0.03 in all cases). For EDL, the effects of caffeine were greatest when the lowest, submaximal stimulation frequency was used (P < 0.001). Caffeine treatments of 140, 70, and 50 μM resulted in significant improvements in acute PO for both maximally activated EDL (3%) and soleus (6%) (P < 0.023 in all cases); however, there was no significant difference in effect between these concentrations (P > 0.420 in all cases). Therefore, the ergogenic effects of caffeine on PO were higher in muscles with a slower fiber type (P < 0.001). Treatment with 35 μM caffeine failed to elicit any improvement in PO in either muscle (P > 0.72 in both cases). Caffeine concentrations below the physiological maximum can directly potentiate skeletal muscle PO. This caffeine-induced increase in force could provide similar benefit across a range of exercise intensities, with greater gains likely in activities powered by slower muscle fiber type.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Is the whole more than the sum of its parts? Evolutionary trade-offs between burst and sustained locomotion in lacertid lizards

B. Vanhooydonck; Rob S. James; Jason Tallis; Peter Aerts; Zoran Tadić; Krystal A. Tolley; Gj Measey; Anthony Herrel

Trade-offs arise when two functional traits impose conflicting demands on the same design trait. Consequently, excellence in one comes at the cost of performance in the other. One of the most widely studied performance trade-offs is the one between sprint speed and endurance. Although biochemical, physiological and (bio)mechanical correlates of either locomotor trait conflict with each other, results at the whole-organism level are mixed. Here, we test whether burst (speed, acceleration) and sustained locomotion (stamina) trade off at both the isolated muscle and whole-organism level among 17 species of lacertid lizards. In addition, we test for a mechanical link between the organismal and muscular (power output, fatigue resistance) performance traits. We find weak evidence for a trade-off between burst and sustained locomotion at the whole-organism level; however, there is a significant trade-off between muscle power output and fatigue resistance in the isolated muscle level. Variation in whole-animal sprint speed can be convincingly explained by variation in muscular power output. The variation in locomotor stamina at the whole-organism level does not relate to the variation in muscle fatigue resistance, suggesting that whole-organism stamina depends not only on muscle contractile performance but probably also on the performance of the circulatory and respiratory systems.


British Journal of Pharmacology | 2015

What can isolated skeletal muscle experiments tell us about the effects of caffeine on exercise performance

Jason Tallis; Michael J. Duncan; Rob S. James

Caffeine is an increasingly popular nutritional supplement due to the legal, significant improvements in sporting performance that it has been documented to elicit, with minimal side effects. Therefore, the effects of caffeine on human performance continue to be a popular area of research as we strive to improve our understanding of this drug and make more precise recommendations for its use in sport. Although variations in exercise intensity seems to affect its ergogenic benefits, it is largely thought that caffeine can induce significant improvements in endurance, power and strength‐based activities. There are a number of limitations to testing caffeine‐induced effects on human performance that can be better controlled when investigating its effects on isolated muscles under in vitro conditions. The hydrophobic nature of caffeine results in a post‐digestion distribution to all tissues of the body making it difficult to accurately quantify its key mechanism of action. This review considers the contribution of evidence from isolated muscle studies to our understating of the direct effects of caffeine on muscle during human performance. The body of in vitro evidence presented suggests that caffeine can directly potentiate skeletal muscle force, work and power, which may be important contributors to the performance‐enhancing effects seen in humans.


International Journal of Environmental Research and Public Health | 2014

The Effect of Green Exercise on Blood Pressure, Heart Rate and Mood State in Primary School Children

Michael J. Duncan; Neil D. Clarke; Samantha Birch; Jason Tallis; Joanne Hankey; Elizabeth Bryant; Emma Eyre

The aim of this study was exploratory and sought to examine the effect on blood pressure (BP), heart rate (HR) and mood state responses in primary school children of moderate intensity cycling whilst viewing a green environment compared to exercise alone. Following ethics approval and parental informed consent, 14 children (seven boys, seven girls, Mean age ± SD = 10 ± 1 years) undertook two, 15 min bouts of cycling at a moderate exercise intensity in a counterbalanced order. In one bout they cycled whilst viewing a film of cycling in a forest setting. In the other condition participants cycled with no visual stimulus. Pre-, immediately post-exercise and 15 min post-exercise, BP, HR and Mood state were assessed. Analysis of variance, indicated significant condition X time interaction for SBP (p = 0.04). Bonferroni post-hoc pairwise comparisons indicated that systolic blood pressure (SBP) 15 min post exercise was significantly lower following green exercise compared to the control condition (p = 0.01). There were no significant differences in diastolic blood pressure (DBP) (all p > 0.05). HR immediately post exercise was significantly higher than HR pre exercise irrespective of green exercise or control condition (p = 0.001). Mood scores for fatigue were significantly higher and scores for vigor lower 15 min post exercise irrespective of green exercise or control condition (both p = 0.0001). Gender was not significant in any analyses (p > 0.05). Thus, the present study identifies an augmented post exercise hypotensive effect for children following green exercise compared to exercise alone.


The Journal of Experimental Biology | 2012

Warmer is better: thermal sensitivity of both maximal and sustained power output in the iliotibialis muscle isolated from adult Xenopus tropicalis

Rob S. James; Jason Tallis; Anthony Herrel; Camille Bonneaud

SUMMARY Environmental temperature varies temporally and spatially and may consequently affect organismal function in complex ways. Effects of temperature are often most pertinent on locomotor performance traits of ectothermic animals. Given the importance of locomotion to mobility and dispersion, variability in temperature may therefore affect the current and future distribution of species. Many previous studies have demonstrated that burst muscle performance changes with temperature. However, less is known about the effects of temperature on sustained skeletal muscle performance. The iliotibialis muscle was isolated from eight male Xenopus tropicalis individuals and subjected to in vitro isometric and work-loop studies at test temperatures of 15, 24, 30 and 32°C. Work-loop power output (average power per cycle) was maximised at each temperature by altering stimulation and strain parameters. A series of 10 work loops was also delivered at each test temperature to quantify endurance performance. Warmer test temperatures tended to increase twitch stress (force normalised to muscle cross-sectional area) and significantly increased tetanic stress. Increased temperature significantly reduced twitch and tetanus activation and relaxation times. Increased temperature also significantly increased both burst muscle power output (cycle average) and sustained (endurance) performance during work loop studies. The increase in burst power output between 15 and 24°C yielded a high Q10 value of 6.86. Recent studies have demonstrated that the negative effects of inorganic phosphate accumulation during prolonged skeletal muscle performance are reduced with increased temperature, possibly explaining the increases in endurance found with increased test temperature in the present study.


Canadian Journal of Physiology and Pharmacology | 2014

Does a physiological concentration of taurine increase acute muscle power output, time to fatigue, and recovery in isolated mouse soleus (slow) muscle with or without the presence of caffeine?

Jason Tallis; Matthew F. Higgins; Val M. Cox; Michael J. Duncan; Rob S. James

High concentrations of caffeine and taurine are key constituents of many ergogenic supplements ingested acutely to provide legal enhancements in athlete performance. Despite this, there is little evidence supporting the claims for the performance-enhancing effects of acute taurine supplementation. In-vitro models have demonstrated that a caffeine-induced muscle contracture can be further potentiated when combined with a high concentration of taurine. However, the high concentrations of caffeine used in previous research would be toxic for human consumption. Therefore, this study aimed to investigate whether a physiological dose of caffeine and taurine would directly potentiate skeletal muscle performance. Isolated mouse soleus muscle was used to examine the effects of physiological taurine (TAU), caffeine (CAF), and taurine-caffeine combined (TC) on (i) acute muscle power output; (ii) time to fatigue; and (iii) recovery from fatigue, compared with the untreated controls (CON). Treatment with TAU failed to elicit any significant difference in the measured parameters. Treatment with TC resulted in a significant increase in acute muscle power output and faster time to fatigue. The ergogenic benefit posed by TC was not different from the effects of caffeine alone, suggesting no acute ergogenic benefit of taurine.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014

Early effects of ageing on the mechanical performance of isolated locomotory (EDL) and respiratory (diaphragm) skeletal muscle using the work-loop technique

Jason Tallis; Rob S. James; Alexander G. Little; Val M. Cox; Michael J. Duncan; Frank Seebacher

Previous isolated muscle studies examining the effects of ageing on contractility have used isometric protocols, which have been shown to have poor relevance to dynamic muscle performance in vivo. The present study uniquely uses the work-loop technique for a more realistic estimation of in vivo muscle function to examine changes in mammalian skeletal muscle mechanical properties with age. Measurements of maximal isometric stress, activation and relaxation time, maximal power output, and sustained power output during repetitive activation and recovery are compared in locomotory extensor digitorum longus (EDL) and core diaphragm muscle isolated from 3-, 10-, 30-, and 50-wk-old female mice to examine the early onset of ageing. A progressive age-related reduction in maximal isometric stress that was of greater magnitude than the decrease in maximal power output occurred in both muscles. Maximal force and power developed earlier in diaphragm than EDL muscle but demonstrated a greater age-related decline. The present study indicates that ability to sustain skeletal muscle power output through repetitive contraction is age- and muscle-dependent, which may help rationalize previously reported equivocal results from examination of the effect of age on muscular endurance. The age-related decline in EDL muscle performance is prevalent without a significant reduction in muscle mass, and biochemical analysis of key marker enzymes suggests that although there is some evidence of a more oxidative fiber type, this is not the primary contributor to the early age-related reduction in muscle contractility.


The Journal of Experimental Biology | 2014

The cost of muscle power production: muscle oxygen consumption per unit work increases at low temperatures in Xenopus laevis

Frank Seebacher; Jason Tallis; Rob S. James

Metabolic energy (ATP) supply to muscle is essential to support activity and behaviour. It is expected, therefore, that there is strong selection to maximise muscle power output for a given rate of ATP use. However, the viscosity and stiffness of muscle increases with a decrease in temperature, which means that more ATP may be required to achieve a given work output. Here, we tested the hypothesis that ATP use increases at lower temperatures for a given power output in Xenopus laevis. To account for temperature variation at different time scales, we considered the interaction between acclimation for 4 weeks (to 15 or 25°C) and acute exposure to these temperatures. Cold-acclimated frogs had greater sprint speed at 15°C than warm-acclimated animals. However, acclimation temperature did not affect isolated gastrocnemius muscle biomechanics. Isolated muscle produced greater tetanus force, and faster isometric force generation and relaxation, and generated more work loop power at 25°C than at 15°C acute test temperature. Oxygen consumption of isolated muscle at rest did not change with test temperature, but oxygen consumption while muscle was performing work was significantly higher at 15°C than at 25°C, regardless of acclimation conditions. Muscle therefore consumed significantly more oxygen at 15°C for a given work output than at 25°C, and plastic responses did not modify this thermodynamic effect. The metabolic cost of muscle performance and activity therefore increased with a decrease in temperature. To maintain activity across a range of temperature, animals must increase ATP production or face an allocation trade-off at lower temperatures. Our data demonstrate the potential energetic benefits of warming up muscle before activity, which is seen in diverse groups of animals such as bees, which warm flight muscle before take-off, and humans performing warm ups before exercise.


Journal of Applied Physiology | 2017

The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles

Jason Tallis; Cameron Hill; Rob S. James; Val M. Cox; Frank Seebacher

Obesity affects the major metabolic and cellular processes involved in skeletal muscle contractility. Surprisingly, the effect of obesity on isolated skeletal muscle performance remains unresolved. The present study is the first to examine the muscle-specific changes in contractility following dietary-induced obesity using an isolated muscle work-loop (WL) model that more closely represents in vivo muscle performance. Following 16-wk high-calorific feeding, soleus (SOL), extensor digitorum longus (EDL), and diaphragm (DIA) were isolated from female (CD-1) mice, and contractile performance was compared against a lean control group. Obese SOL produced greater isometric force; however, isometric stress (force per unit muscle area), absolute WL power, and normalized WL power (watts per kilogram muscle mass) were unaffected. Maximal isometric force and absolute WL power of the EDL were similar between groups. For both EDL and DIA, isometric stress and normalized WL power were reduced in the obese groups. Obesity caused a significant reduction in fatigue resistance in all cases. Our findings demonstrate a muscle-specific reduction in contractile performance and muscle quality that is likely related to in vivo mechanical role, fiber type, and metabolic profile, which may in part be related to changes in myosin heavy chain expression and AMP-activated protein kinase activity. These results infer that, beyond the additional requirement of moving a larger body mass, functional performance and quality of life may be further limited by poor muscle function in obese individuals. As such, a reduction in muscle performance may be a substantial contributor to the negative cycle of obesity. NEW & NOTEWORTHY The effect of obesity on isolated muscle function is surprisingly underresearched. The present study is the first to examine the effects of obesity on isolated muscle performance using a method that more closely represents real-world muscle function. This work uniquely establishes a muscle-specific profile of mechanical changes in relation to underpinning mechanisms. These findings may be important to understanding the negative cycle of obesity and in designing interventions for improving weight status.


Muscle & Nerve | 2016

Placebo effects of caffeine on maximal voluntary concentric force of the knee flexors and extensors

Jason Tallis; Bilal Muhammad; Mohammed Islam; Michael J. Duncan

Introduction: We examined the placebo effect of caffeine and the combined effect of caffeine and caffeine expectancy on maximal voluntary strength. Methods: Fourteen men completed 4 randomized, single‐blind experimental trials: (1) told caffeine, given caffeine (5 mg/kg) (CC); (2) told caffeine, given placebo (CP); (3) told placebo, given placebo (PP); and (4) told placebo, given caffeine (PC). Maximal voluntary concentric force and fatigue resistance of the knee flexors and extensors were measured using isokinetic dynamometry. Results: A significant and equal improvement in peak concentric force was found in the CC and PC trials. Despite participants believing caffeine would evoke a performance benefit, there was no effect of CP. Conclusion: Caffeine caused an improvement in some aspects of muscle strength, but there was no additional effect of expectancy. Performance was poorer in participants who believed caffeine would have the greatest benefit, which highlights a link between expected ergogenicity, motivation, and personality characteristics. Muscle Nerve 54: 479–486, 2016

Collaboration


Dive into the Jason Tallis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge