Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Tucciarone is active.

Publication


Featured researches published by Jason Tucciarone.


Cell | 2014

A Cortical Circuit for Gain Control by Behavioral State

Yu Fu; Jason Tucciarone; J. Sebastian Espinosa; Nengyin Sheng; Daniel P. Darcy; Roger A. Nicoll; Z. Josh Huang; Michael P. Stryker

The brains response to sensory input is strikingly modulated by behavioral state. Notably, the visual response of mouse primary visual cortex (V1) is enhanced by locomotion, a tractable and accessible example of a time-locked change in cortical state. The neural circuits that transmit behavioral state to sensory cortex to produce this modulation are unknown. In vivo calcium imaging of behaving animals revealed that locomotion activates vasoactive intestinal peptide (VIP)-positive neurons in mouse V1 independent of visual stimulation and largely through nicotinic inputs from basal forebrain. Optogenetic activation of VIP neurons increased V1 visual responses in stationary awake mice, artificially mimicking the effect of locomotion, and photolytic damage of VIP neurons abolished the enhancement of V1 responses by locomotion. These findings establish a cortical circuit for the enhancement of visual response by locomotion and provide a potential common circuit for the modulation of sensory processing by behavioral state.


Nature Methods | 2014

Targeting cells with single vectors using multiple-feature Boolean logic

Lief E. Fenno; Joanna Mattis; Charu Ramakrishnan; Minsuk Hyun; Seunghee Lee; Miao He; Jason Tucciarone; Aslihan Selimbeyoglu; Andre Berndt; Logan Grosenick; Kelly A. Zalocusky; Hannah Bernstein; H. Swanson; C. Perry; Ilka Diester; Frederick M. Boyce; Caroline E. Bass; Rachael L. Neve; Z. J. Huang; Karl Deisseroth

Precisely defining the roles of specific cell types is an intriguing frontier in the study of intact biological systems and has stimulated the rapid development of genetically encoded tools for observation and control. However, targeting these tools with adequate specificity remains challenging: most cell types are best defined by the intersection of two or more features such as active promoter elements, location and connectivity. Here we have combined engineered introns with specific recombinases to achieve expression of genetically encoded tools that is conditional upon multiple cell-type features, using Boolean logical operations all governed by a single versatile vector. We used this approach to target intersectionally specified populations of inhibitory interneurons in mammalian hippocampus and neurons of the ventral tegmental area defined by both genetic and wiring properties. This flexible and modular approach may expand the application of genetically encoded interventional and observational tools for intact-systems biology.


Nature | 2015

The paraventricular thalamus controls a central amygdala fear circuit

Mario A. Penzo; Vincent Robert; Jason Tucciarone; Dimitri De Bundel; Minghui Wang; Linda Van Aelst; Martin Darvas; Luis F. Parada; Richard D. Palmiter; Miao He; Z. Josh Huang; Bo Li

Appropriate responses to an imminent threat brace us for adversities. The ability to sense and predict threatening or stressful events is essential for such adaptive behaviour. In the mammalian brain, one putative stress sensor is the paraventricular nucleus of the thalamus (PVT), an area that is readily activated by both physical and psychological stressors. However, the role of the PVT in the establishment of adaptive behavioural responses remains unclear. Here we show in mice that the PVT regulates fear processing in the lateral division of the central amygdala (CeL), a structure that orchestrates fear learning and expression. Selective inactivation of CeL-projecting PVT neurons prevented fear conditioning, an effect that can be accounted for by an impairment in fear-conditioning-induced synaptic potentiation onto somatostatin-expressing (SOM+) CeL neurons, which has previously been shown to store fear memory. Consistently, we found that PVT neurons preferentially innervate SOM+ neurons in the CeL, and stimulation of PVT afferents facilitated SOM+ neuron activity and promoted intra-CeL inhibition, two processes that are critical for fear learning and expression. Notably, PVT modulation of SOM+ CeL neurons was mediated by activation of the brain-derived neurotrophic factor (BDNF) receptor tropomysin-related kinase B (TrkB). As a result, selective deletion of either Bdnf in the PVT or Trkb in SOM+ CeL neurons impaired fear conditioning, while infusion of BDNF into the CeL enhanced fear learning and elicited unconditioned fear responses. Our results demonstrate that the PVT–CeL pathway constitutes a novel circuit essential for both the establishment of fear memory and the expression of fear responses, and uncover mechanisms linking stress detection in PVT with the emergence of adaptive behaviour.


Journal of Neuroscience Methods | 2008

Detection of cortical laminar architecture using manganese-enhanced MRI.

Afonso C. Silva; Jung Hee Lee; Carolyn W.-H. Wu; Jason Tucciarone; Galit Pelled; Ichio Aoki; Alan P. Koretsky

Changes in manganese-enhanced MRI (MEMRI) contrast across the rodent somatosensory cortex were compared to the cortical laminae as identified by tissue histology and administration of an anatomical tracer to cortex and thalamus. Across the cortical thickness, MEMRI signal intensity was low in layer I, increased in layer II, decreased in layer III until mid-layer IV, and increased again, peaking in layer V, before decreasing through layer VI. The reeler mouse mutant was used to confirm that the cortical alternation in MEMRI contrast was related to laminar architecture. Unlike in wild-type mice, the reeler cortex showed no appreciable changes in MEMRI signal, consistent with absence of cortical laminae in histological slides. The tract tracing ability of MEMRI was used to further confirm assignments and demonstrate laminar specificity. Twelve to 16 h after stereotaxic injections of MnCl(2) to the ventroposterior thalamic nuclei, an overall increase in signal intensity was detected in primary somatosensory cortex compared to other brain regions. Maximum intensity projection images revealed a distinctly bright stripe located 600-700 microm below the pial surface, in layer IV. The data show that both systemic and tract tracing forms of MEMRI are useful for studying laminar architecture in the brain.


The Journal of Neuroscience | 2015

The Mediodorsal Thalamus Drives Feedforward Inhibition in the Anterior Cingulate Cortex via Parvalbumin Interneurons

Kristen Delevich; Jason Tucciarone; Z. J. Huang; Bo Li

Although the medial prefrontal cortex (mPFC) is classically defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD), the nature of information transfer between MD and mPFC is poorly understood. In sensory thalamocortical pathways, thalamic recruitment of feedforward inhibition mediated by fast-spiking, putative parvalbumin-expressing (PV) interneurons is a key feature that enables cortical neurons to represent sensory stimuli with high temporal fidelity. Whether a similar circuit mechanism is in place for the projection from the MD (a higher-order thalamic nucleus that does not receive direct input from the periphery) to the mPFC is unknown. Here we show in mice that inputs from the MD drive disynaptic feedforward inhibition in the dorsal anterior cingulate cortex (dACC) subregion of the mPFC. In particular, we demonstrate that axons arising from MD neurons directly synapse onto and excite PV interneurons that in turn mediate feedforward inhibition of pyramidal neurons in layer 3 of the dACC. This feedforward inhibition in the dACC limits the time window during which pyramidal neurons integrate excitatory synaptic inputs and fire action potentials, but in a manner that allows for greater flexibility than in sensory cortex. These findings provide a foundation for understanding the role of MD-PFC circuit function in cognition.


Nature | 2016

A basal ganglia circuit for evaluating action outcomes

Marcus Stephenson-Jones; Kai Yu; Sandra Ahrens; Jason Tucciarone; Aile N. van Huijstee; Luis A. Mejia; Mario A. Penzo; Lung-Hao Tai; Linda Wilbrecht; Bo Li

The basal ganglia, a group of subcortical nuclei, play a crucial role in decision-making by selecting actions and evaluating their outcomes. While much is known about the function of the basal ganglia circuitry in selection, how these nuclei contribute to outcome evaluation is less clear. Here we show that neurons in the habenula-projecting globus pallidus (GPh) in mice are essential for evaluating action outcomes and are regulated by a specific set of inputs from the basal ganglia. We find in a classical conditioning task that individual mouse GPh neurons bidirectionally encode whether an outcome is better or worse than expected. Mimicking these evaluation signals with optogenetic inhibition or excitation is sufficient to reinforce or discourage actions in a decision-making task. Moreover, cell-type-specific synaptic manipulations reveal that the inhibitory and excitatory inputs to the GPh are necessary for mice to appropriately evaluate positive and negative feedback, respectively. Finally, using rabies-virus-assisted monosynaptic tracing, we show that the GPh is embedded in a basal ganglia circuit wherein it receives inhibitory input from both striosomal and matrix compartments of the striatum, and excitatory input from the ‘limbic’ regions of the subthalamic nucleus. Our results provide evidence that information about the selection and evaluation of actions is channelled through distinct sets of basal ganglia circuits, with the GPh representing a key locus in which information of opposing valence is integrated to determine whether action outcomes are better or worse than expected.


NeuroImage | 2009

Layer specific tracing of corticocortical and thalamocortical connectivity in the rodent using manganese enhanced MRI

Jason Tucciarone; Kai-Hsiang Chuang; Steven J. Dodd; Afonso C. Silva; Galit Pelled; Alan P. Koretsky

Information about layer specific connections in the brain comes mainly from classical neuronal tracers that rely on histology. Manganese Enhanced MRI (MEMRI) has mapped connectivity along a number of brain pathways in several animal models. It is not clear at what level of specificity neuronal connectivity measured using MEMRI tracing can resolve. The goal of this work was to determine if neural tracing using MEMRI could distinguish layer inputs of major pathways of the cortex. To accomplish this, tracing was performed between hemispheres of the somatosensory (S1) cortex and between the thalamus and S1 cortex. T(1) mapping and T(1) weighted pulse sequences detected layer specific tracing after local injection of MnCl(2). Approximately 12 h following injections into S1 cortex, maximal T(1) reductions were observed at 0.6+/-0.07 and 1.1+/-0.12 mm from the brain surface in the contralateral S1. These distances correspond to the positions of layer 3 and 5 consistent with the known callosal inputs along this pathway. Four to six hours following injection of MnCl(2) into the thalamus there were maximal T(1) reductions between 0.7+/-0.08 and 0.8+/-0.08 mm from the surface of the brain, which corresponds to layer 4. This is consistent with terminations of the known thalamocortical projections. In order to observe the first synapse projection, it was critical to perform MRI at the right time after injections to detect layer specificity with MEMRI. At later time points, tracing through the cortical network led to more uniform contrast throughout the cortex due to its complex neuronal connections. These results are consistent with well established neuronal pathways within the somatosensory cortex and demonstrate that layer specific somatosensory connections can be detected in vivo using MEMRI.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Input-specific maturation of synaptic dynamics of parvalbumin interneurons in primary visual cortex

Jiangteng Lu; Jason Tucciarone; Y. Lin; Z. J. Huang

Significance Proper recruitment of inhibitory interneurons is crucial to configuring cortical neural circuits for information processing and propagation, but the development of synaptic inputs to these interneurons is not well-understood. We traced the sources of long-range and local inputs to a major interneuron subtype, the parvalbumin-positive interneurons (PVNs), in mouse visual cortex. Whereas the long-range inputs show strong short-term synaptic depression, local recurrent inputs gradually lose such depression during postnatal maturation. We further uncovered the circuitry and molecular mechanisms that contribute to this source-dependent maturation in synaptic inputs. Although short-term depression of long-range inputs is well-suited for afferent signal detection, the robust synaptic dynamics of local inputs may facilitate rapid and proportional PVN recruitment for regulating network operations. Cortical networks consist of local recurrent circuits and long-range pathways from other brain areas. Parvalbumin-positive interneurons (PVNs) regulate the dynamic operation of local ensembles as well as the temporal precision of afferent signals. The synaptic recruitment of PVNs that support these circuit operations is not well-understood. Here we demonstrate that the synaptic dynamics of PVN recruitment in mouse visual cortex are customized according to input source with distinct maturation profiles. Whereas the long-range inputs to PVNs show strong short-term depression throughout postnatal maturation, local inputs from nearby pyramidal neurons progressively lose such depression. This enhanced local recruitment depends on PVN-mediated reciprocal inhibition and results from both pre- and postsynaptic mechanisms, including calcium-permeable AMPA receptors at PVN postsynaptic sites. Although short-term depression of long-range inputs is well-suited for afferent signal detection, the robust dynamics of local inputs may facilitate rapid and proportional PVN recruitment in regulating local circuit operations.


Nature Neuroscience | 2017

Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells

Jiangteng Lu; Jason Tucciarone; Nancy Padilla-Coreano; Miao He; Joshua A. Gordon; Z. Josh Huang

The neocortex comprises multiple information processing streams mediated by subsets of glutamatergic pyramidal cells (PCs) that receive diverse inputs and project to distinct targets. How GABAergic interneurons regulate the segregation and communication among intermingled PC subsets that contribute to separate brain networks remains unclear. Here we demonstrate that a subset of GABAergic chandelier cells (ChCs) in the prelimbic cortex, which innervate PCs at spike initiation site, selectively control PCs projecting to the basolateral amygdala (BLAPC) compared to those projecting to contralateral cortex (CCPC). These ChCs in turn receive preferential input from local and contralateral CCPCs as opposed to BLAPCs and BLA neurons (the prelimbic cortex–BLA network). Accordingly, optogenetic activation of ChCs rapidly suppresses BLAPCs and BLA activity in freely behaving mice. Thus, the exquisite connectivity of ChCs not only mediates directional inhibition between local PC ensembles but may also shape communication hierarchies between global networks.


American Journal of Drug and Alcohol Abuse | 2018

Evaluation of the appropriate use of a CIWA-Ar alcohol withdrawal protocol in the general hospital setting

Amanda S. Eloma; Jason Tucciarone; Edmund M. Hayes; Brian D. Bronson

ABSTRACT Background: The Clinical Institute Withdrawal Assessment-Alcohol, Revised (CIWA-Ar) is an assessment tool used to quantify alcohol withdrawal syndrome (AWS) severity and inform benzodiazepine treatment for alcohol withdrawal. Objectives: To evaluate the prescribing patterns and appropriate use of the CIWA-Ar protocol in a general hospital setting, as determined by the presence or absence of documented AWS risk factors, patients’ ability to communicate, and provider awareness of the CIWA-Ar order. Methods: This retrospective chart review included 118 encounters of hospitalized patients placed on a CIWA-Ar protocol during one year. The following data were collected for each encounter: patient demographics, admitting diagnosis, ability to communicate, and admission blood alcohol level; and medical specialty of the clinician ordering CIWA-Ar, documentation of the presence or absence of established AWS risk factors, specific parameters of the protocol ordered, service admitted to, provider documentation of awareness of the active protocol within 48 h of initial order, total benzodiazepine dose equivalents administered and associated adverse events. Results: 57% of patients who started on a CIWA-Ar protocol had either zero or one documented risk factor for AWS (19% and 38% respectively). 20% had no documentation of recent alcohol use. 14% were unable to communicate. 19% of medical records lacked documentation of provider awareness of the ordered protocol. Benzodiazepine associated adverse events were documented in 15% of encounters. Conclusions: The judicious use of CIWA-Ar protocols in general hospitals requires mechanisms to ensure assessment of validated alcohol withdrawal risk factors, exclusion of patients who cannot communicate, and continuity of care during transitions.

Collaboration


Dive into the Jason Tucciarone's collaboration.

Top Co-Authors

Avatar

Z. Josh Huang

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bo Li

Tsinghua University

View shared research outputs
Top Co-Authors

Avatar

Miao He

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Z. J. Huang

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Afonso C. Silva

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alan P. Koretsky

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Brian Zingg

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Galit Pelled

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Huizhong W. Tao

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jiangteng Lu

Cold Spring Harbor Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge