Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Vleminckx is active.

Publication


Featured researches published by Jason Vleminckx.


Journal of Ecology | 2014

Prevalence of phylogenetic clustering at multiple scales in an African rain forest tree community

Ingrid Parmentier; Maxime Réjou-Méchain; Jérôme Chave; Jason Vleminckx; Duncan W. Thomas; David Kenfack; George B. Chuyong; Olivier J. Hardy

Summary 1. In highly diverse ecosystems, such as tropical forests, the relative importance of mechanisms underlying species coexistence (e.g. habitat filtering, competitive exclusion, neutral dynamics) is still poorly known and probably varies depending on spatial and phylogenetic scales. 2. Here, we develop new approaches for dissecting simultaneously the phylogenetic structure of communities at different phylogenetic depths and spatial scales. We tested with simulations that our method is able to disentangle overdispersion and clustering effects occurring at contrasted phylogenetic depths. 3. We applied our approaches to a 50 ha Forest Dynamic Plot located in Korup National Park (Cameroon) where 329,000 tree stems ≥ 1 cm in diameter were identified and mapped, and using a newly generated dated molecular phylogenetic tree based on 2 plastid loci (rbcL and matK), including 272 species from Korup (97% of the individuals). 4. Significant patterns of phylogenetic turnover were detected across 20 9 20 m 2 quadrats at most spatial scales, with higher turnover between topographic habitats than within habitats, indicating the prevalence of habitat filtering processes. Spatial phylogenetic clustering was detected over the entire range of phylogenetic depths indicating that competitive exclusion does not generate a pattern of phylogenetic overdispersion at this scale, even at a shallow phylogenetic depth. 5. Using an individual-based approach, we also show that closely related species tended to aggregate spatially until a scale of 1 m. However, the signal vanishes at smaller distance, suggesting that competitive exclusion can balance the impact of environmental filtering at a very fine spatial scale. 6. Synthesis. Using new methods to characterize the structure of communities across spatial and phylogenetic scales, we inferred the relative importance of the mechanisms underlying species coexistence in tropical forests. Our analysis confirms that environmental filtering processes are key in the structuring of natural communities at most spatial scales. Although negative-density tends to limit coexistence of closely related species at very short distance (<1 m), its influence is largely veiled by environmental filtering at larger distances.


PLOS ONE | 2014

Soil Charcoal to Assess the Impacts of Past Human Disturbances on Tropical Forests

Jason Vleminckx; Julie Morin-Rivat; Achille Biwole; Kasso Daïnou; Jean-François Gillet; Jean-Louis Doucet; Thomas Drouet; Olivier J. Hardy

The canopy of many central African forests is dominated by light-demanding tree species that do not regenerate well under themselves. The prevalence of these species might result from ancient slash-and-burn agricultural activities that created large openings, while a decline of these activities since the colonial period could explain their deficit of regeneration. To verify this hypothesis, we compared soil charcoal abundance, used as a proxy for past slash-and-burn agriculture, and tree species composition assessed on 208 rainforest 0.2 ha plots located in three areas from Southern Cameroon. Species were classified in regeneration guilds (pioneer, non-pioneer light-demanding, shade-bearer) and characterized by their wood-specific gravity, assumed to reflect light requirement. We tested the correlation between soil charcoal abundance and: (i) the relative abundance of each guild, (ii) each species and family abundance and (iii) mean wood-specific gravity. Charcoal was found in 83% of the plots, indicating frequent past forest fires. Radiocarbon dating revealed two periods of fires: “recent” charcoal were on average 300 years old (up to 860 BP, n = 16) and occurred in the uppermost 20 cm soil layer, while “ancient” charcoal were on average 1900 years old (range: 1500 to 2800 BP, n = 43, excluding one sample dated 9400 BP), and found in all soil layers. While we expected a positive correlation between the relative abundance of light-demanding species and charcoal abundance in the upper soil layer, overall there was no evidence that the current heterogeneity in tree species composition can be explained by charcoal abundance in any soil layer. The absence of signal supporting our hypothesis might result from (i) a relatively uniform impact of past slash-and-burn activities, (ii) pedoturbation processes bringing ancient charcoal to the upper soil layer, blurring the signal of centuries-old Human disturbances, or (iii) the prevalence of other environmental factors on species composition.


The Holocene | 2016

High spatial resolution of late-Holocene human activities in the moist forests of Central Africa using soil charcoal and charred botanical remains

Julie Morin-Rivat; Achille Biwole; Anaïs Gorel; Jason Vleminckx; Jean-François Gillet; Nils Bourland; Olivier J. Hardy; Alexandre Livingstone Smith; Kasso Daïnou; Laurent Dedry; Hans Beeckman; Jean-Louis Doucet

Palaeoecological and archaeological studies have demonstrated that human populations have long inhabited the moist forests of central Africa. However, spatial and temporal patterns of human activities have hardly been investigated with satisfactory accuracy. In this study, we propose to characterize past human activities at local scale by using a systematic quantitative and qualitative methodology based on soil charcoal and charred botanical remains. A total of 88 equidistant test-pits were excavated along six transects in two contrasting forest types in southern Cameroon. Charred botanical remains were collected by water-sieving and sorted by type (wood charcoals, oil palm endocarps and unidentified seeds). A total of 50 Accelerator Mass Spectrometry 14C dates were also obtained. Results showed that charred macroremains were found at multiple places in the forest, suggesting scattered human activities, which were distributed into two main periods (Phase A: 2300–1300 BP; Phase B: 580 BP to the present). Charred botanical remains indicated two types of land-use: (1) domestic, with oil palm endocarps most often associated with potsherds (villages) and (2) agricultural, with charcoal as probable remnant of slash-and-burn cultivation (fields). Oil palm endocarp abundance decreased with distance from the identified human settlements. Our methodology allowed documenting, at high resolution, the spatial and temporal patterns of human activities in central African moist forests and could be applied to other tropical contexts.


Methods in Ecology and Evolution | 2018

Field methods for sampling tree height for tropical forest biomass estimation

Martin J. P. Sullivan; Simon L. Lewis; Wannes Hubau; Lan Qie; Timothy R. Baker; Lindsay Banin; Jérôme Chave; Aida Cuni-Sanchez; Ted R. Feldpausch; Gabriela Lopez-Gonzalez; E.J.M.M. Arets; Peter S. Ashton; Jean François Bastin; Nicholas J. Berry; Jan Bogaert; Rene G. A. Boot; Francis Q. Brearley; Roel J. W. Brienen; David F. R. P. Burslem; Charles De Cannière; Markéta Chudomelová; Martin Dančák; Corneille Ewango; Radim Hédl; Jon Lloyd; Jean-Remy Makana; Yadvinder Malhi; Beatriz Schwantes Marimon; Ben Hur Marimon Junior; Faizah Metali

Abstract Quantifying the relationship between tree diameter and height is a key component of efforts to estimate biomass and carbon stocks in tropical forests. Although substantial site‐to‐site variation in height–diameter allometries has been documented, the time consuming nature of measuring all tree heights in an inventory plot means that most studies do not include height, or else use generic pan‐tropical or regional allometric equations to estimate height. Using a pan‐tropical dataset of 73 plots where at least 150 trees had in‐field ground‐based height measurements, we examined how the number of trees sampled affects the performance of locally derived height–diameter allometries, and evaluated the performance of different methods for sampling trees for height measurement. Using cross‐validation, we found that allometries constructed with just 20 locally measured values could often predict tree height with lower error than regional or climate‐based allometries (mean reduction in prediction error = 0.46 m). The predictive performance of locally derived allometries improved with sample size, but with diminishing returns in performance gains when more than 40 trees were sampled. Estimates of stand‐level biomass produced using local allometries to estimate tree height show no over‐ or under‐estimation bias when compared with biomass estimates using field measured heights. We evaluated five strategies to sample trees for height measurement, and found that sampling strategies that included measuring the heights of the ten largest diameter trees in a plot outperformed (in terms of resulting in local height–diameter models with low height prediction error) entirely random or diameter size‐class stratified approaches. Our results indicate that even limited sampling of heights can be used to refine height–diameter allometries. We recommend aiming for a conservative threshold of sampling 50 trees per location for height measurement, and including the ten trees with the largest diameter in this sample.


Greener Journal of Biological Sciences | 2013

Species Responses to Edaphic Heterogeneity in Semi- Deciduous Forests from the Congo Basin

C. Amani; Jason Vleminckx; T.D. de la Thibauderie; Jean Lejoly; Pierre Jacques Meerts; Olivier J. Hardy

Coexistence of species in tropical forests remains an open debate in community ecology. Two main substrates, sandy and clay soils, exist in sites harboring semi-deciduous forests in the central Congo Basin. The way this edaphic heterogeneity affects species occurrences and abundances was investigated. Sampling plots were established on each of the soils in Yoko, a natural forest reserve located in the surrounding of Kisangani (eastern D.R. Congo). Results showed that species react in different ways according to the considered soil. Some species appear to be “edaphic specialists” by their exclusive occurrence or preference towards a given soil. This is the case for species like Scorodophloeus zenkeri, Cynometra hankei, Prioria balsamiferum on sandy soils whereas Alstonia boonei, Antiaris toxicaria, etc. prefer clay substrates. Many others expressed no preference at all. We computed species accumulation curves and tested for the local diversity (Fisher alpha index) among soils. Communities on clay soils appear to be rich and more diversified.


Ecography | 2018

Disentangling good from bad practices in the selection of spatial or phylogenetic eigenvectors

David Bauman; Thomas Drouet; Stéphane Dray; Jason Vleminckx

Eigenvector mapping techniques are widely used by ecologists and evolutionary biologists to describe and control for spatial and/or phylogenetic patterns in their data. The selection of an appropriate subset of eigenvectors is a critical step (misspecification can lead to highly biased results and interpretations), and there is no consensus yet on how to proceed. We conducted a ten‐year review of the practices of eigenvector selection and highlighted three main procedures: selecting the subset of descriptors minimising the Akaike information criterion (AIC), using a forward selection with double stopping criterion after testing the global model significance (FWD), and selecting the subset minimising the autocorrelation in the model residuals (MIR). We compared the type I error rates, statistical power, and R² estimation accuracy of these methods using simulated data. Finally, a real dataset was analysed using variation partitioning analysis to illustrate to what extent the different selection approaches affected the ecological interpretation of the results. We show that, while the FWD and MIR approaches presented a correct type I error rate and were accurate, the AIC approach displayed extreme type I error rates (100%), and strongly overestimated the R². Moreover, the AIC approach resulted in wrong ecological interpretations, as it overestimated the pure spatial fraction (and the joint spatial‐environmental fraction to a lesser extent) of the variation partitioning. Both the FWD and MIR methods performed well at broad and medium scales but had a very low power to detect fine‐scale patterns. The FWD approach selected more eigenvectors than the MIR approach but also returned more accurate R² estimates. Hence, we discourage any future use of the AIC approach, and advocate choosing between the MIR and FWD approaches depending on the objective of the study: controlling for spatial or phylogenetic autocorrelation (MIR) or describing the patterns as accurately as possible (FWD).


Journal of Plant Ecology-uk | 2016

Fine-Scale Habitats Influence Tree Species Assemblage in a Miombo Forest

Jonathan Ilunga Muledi; David Bauman; Thomas Drouet; Jason Vleminckx; Arnaud Jacobs; Jean Lejoly; Pierre Jacques Meerts; Mylor Ngoy Shutcha

Aims Relationships between local habitat heterogeneity and tree communities in miombo woodlands have been very little studied. While some studies have addressed this topic at broad scales and based on few environmental parameters, this study aims at (i) detecting finescale habitats (≤10 ha) on the basis of a detailed characterisation of soil explicitly considering past anthropogenic disturbances, and an exhaustive census of the tree community, and at (ii) searching for indicator tree species corresponding to the resulting habitats. Methods The study was carried out in the miombo woodland of Mikembo Forest Reserve, Upper Katanga, The Democratic Republic of the congo. A complete census of the tree community was conducted in a 10-ha forest dynamics plot comprising 160 adjacent quadrats of 25 × 25 m, with a total of 4604 trees (diameter at breast height > 10 cm). Thirty-six physicochemical soil parameters were measured. Studying the frequency distribution of soil charcoal content allowed identifying local signature of past human agriculture in the soil. Two strategies were used to define habitats: (i) a combination of principal component analysis (PcA) on soil variables and Ward clustering and (ii) multivariate regression trees (MRT) to search for key soil parameters allowing the best prediction of species composition. Tree-habitat associations were tested by means of a robust statistical framework combining the IndVal index and torus randomisations. Important Findings The forest contained 82 tree species and a significant proportion of wet miombo species (e.g. Marquesia macroura). We detected a strong east–west edaphic gradient driven by soil texture; most chemical soil parameters followed this pattern. Five habitats were identified based on soil factors and floristic composition. Nine indicator species of these habitats were found. The key soil factors discriminating habitats were total calcium, available forms of phosphorus and clay content. Even though past agricultural practices were successfully detected in soils, they did not display any significant influence neither on habitat differentiation nor on the associated tree communities. Based on an unprecedented large number of soil parameters, fine-scale soil heterogeneity and niche partitioning were shown to contribute to the variability of the floristic composition in this forest. Our results indicated that considering the most variable environmental parameters, as in PcA, is a poor manner for defining habitats. In contrast, combining MRT with the IndVal index and torus randomisation has proved to be a much more robust and sensitive approach to highlight tree-habitat associations at this scale. The common dichotomous viewpoint of considering deterministic and neutral effects as acting at broad and fine scales, respectively, is not confirmed when measuring suitable environmental variables, even in a case where the physical environment does not exhibit strong heterogeneity.


Archive | 2018

Height-diameter input data and R-code to fit and assess height-diameter models, from 'Field methods for sampling tree height for tropical forest biomass estimation' in Methods in Ecology and Evolution

Martin J. P. Sullivan; Simon L. Lewis; Wannes Hubau; Lan Qie; Timothy R. Baker; Lindsay Banin; Jérôme Chave; Aida Cuni Sanchez; Ted R. Feldpausch; Gabriela Lopez-Gonzalez; E.J.M.M. Arets; Peter S. Ashton; Jean-François Bastin; Nicholas J. Berry; Jan Bogaert; Rene G. A. Boot; Francis Q. Brearley; Roel J. W. Brienen; David F. R. P. Burslem; Charles De Cannière; Markéta Chudomelová; Martin Dančák; Corneille Ewango; Radim Hédl; Jon Lloyd; Jean-Remy Makana; Yadvinder Malhi; Beatriz Schwantes Marimon; Ben Hur Marimon Junior; Faizah Metali

1. Quantifying the relationship between tree diameter and height is a key component of efforts to estimate biomass and carbon stocks in tropical forests. Although substantial site-to-site variation in height-diameter allometries has been documented, the time consuming nature of measuring all tree heights in an inventory plot means that most studies do not include height, or else use generic pan-tropical or regional allometric equations to estimate height. 2. Using a pan-tropical dataset of 73 plots where at least 150 trees had in-field ground-based height measurements, we examined how the number of trees sampled affects the performance of locally-derived height-diameter allometries, and evaluated the performance of different methods for sampling trees for height measurement. 3. Using cross-validation, we found that allometries constructed with just 20 locally measured values could often predict tree height with lower error than regional or climate-based allometries (mean reduction in prediction error = 0.46 m). The predictive performance of locally-derived allometries improved with sample size, but with diminishing returns in performance gains when more than 40 trees were sampled. Estimates of stand-level biomass produced using local allometries to estimate tree height show no over- or under-estimation bias when compared with estimates using measured heights. We evaluated five strategies to sample trees for height measurement, and found that sampling strategies that included measuring the heights of the ten largest diameter trees in a plot outperformed (in terms of resulting in local height-diameter models with low height prediction error) entirely random or diameter size-class stratified approaches. 4. Our results indicate that even remarkably limited sampling of heights can be used to refine height-diameter allometries. We recommend aiming for a conservative threshold of sampling 50 trees per location for height measurement, and including the ten trees with the largest diameter in this sample.


Frontiers in Plant Science | 2018

Divergent Secondary Metabolites and Habitat Filtering Both Contribute to Tree Species Coexistence in the Peruvian Amazon

Jason Vleminckx; Diego Salazar; Claire Fortunel; Italo Mesones; Nállarett Dávila; John Lokvam; Krista Beckley; Christopher Baraloto; Paul V. A. Fine

Little is known about the mechanisms promoting or limiting the coexistence of functionally divergent species in hyperdiverse tropical tree genera. Density-dependent enemy attacks have been proposed to be a major driver for the local coexistence of chemically divergent congeneric species. At the same time, we expect local soil conditions to favor the coexistence of species sharing similar functional traits related to resource use strategies, while environmental heterogeneity would promote the diversity of these traits at both local and large spatial scales. To test how these traits mediate species coexistence, we used functional trait data for 29 species from the tree genus Protium (Burseraceae), collected in 19 plots (2 ha each) in the Peruvian Amazon. We characterized the presence-absence of 189 plant secondary metabolites (SM) for 27 of these species, and 14 functional traits associated with resource use strategies (RUT) for 16 species. Based on these data, we found that SM were significantly more dissimilar than null expectations for species co-occurring within plots, whereas RUT were significantly more similar. These results were consistent with the hypothesis that density-dependent enemy attacks contribute to the local coexistence of congeneric species displaying divergent chemical defenses, whereas local habitat conditions filter species with similar RUT. Using measurements of nine soil properties in each plot, we also found a significant turnover of RUT traits with increasing dissimilarity of soil texture and nutrient availabilities, providing support for the hypothesis that soil heterogeneity maintains functional diversity at larger spatial scales (from 500 m up to ca. 200 km) in Protium communities. Our study provides new evidence suggesting that density-dependent enemy attacks and soil heterogeneity both contribute to maintaining high species richness in diverse tropical forests.


Forest Ecology and Management | 2016

Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests

Adeline Fayolle; Grace Jopaul Loubota Panzou; Thomas Drouet; M. D. Swaine; Sébastien Bauwens; Jason Vleminckx; Achille Biwole; Philippe Lejeune; Jean-Louis Doucet

Collaboration


Dive into the Jason Vleminckx's collaboration.

Top Co-Authors

Avatar

Olivier J. Hardy

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Drouet

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Beeckman

Royal Museum for Central Africa

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge