Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Witherington is active.

Publication


Featured researches published by Jason Witherington.


Journal of Pharmacology and Experimental Therapeutics | 2007

GSK189254, a Novel H3 Receptor Antagonist That Binds to Histamine H3 Receptors in Alzheimer's Disease Brain and Improves Cognitive Performance in Preclinical Models

Andrew D. Medhurst; Alan R. Atkins; Isabel J. M. Beresford; Kim Brackenborough; Michael A. Briggs; Andrew R. Calver; Jackie Cilia; Jane E. Cluderay; Barry Crook; John B. Davis; Rebecca K. Davis; Robert P. Davis; Lee A. Dawson; Andrew G. Foley; Jane Gartlon; M. Isabel Gonzalez; Teresa Heslop; Warren D. Hirst; Carol A. Jennings; Declan N.C. Jones; Laurent P. Lacroix; Abbe Martyn; Sandrine Ociepka; Alison M. Ray; Ciaran M. Regan; Jennifer C. Roberts; Joanne Schogger; Eric Southam; Tania O. Stean; Brenda K. Trail

6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) is a novel histamine H3 receptor antagonist with high affinity for human (pKi = 9.59 –9.90) and rat (pKi = 8.51–9.17) H3 receptors. GSK189254 is >10,000-fold selective for human H3 receptors versus other targets tested, and it exhibited potent functional antagonism (pA2 = 9.06 versus agonist-induced changes in cAMP) and inverse agonism [pIC50 = 8.20 versus basal guanosine 5′-O-(3-[35S]thio)triphosphate binding] at the human recombinant H3 receptor. In vitro autoradiography demonstrated specific [3H]GSK189254 binding in rat and human brain areas, including cortex and hippocampus. In addition, dense H3 binding was detected in medial temporal cortex samples from severe cases of Alzheimers disease, suggesting for the first time that H3 receptors are preserved in late-stage disease. After oral administration, GSK189254 inhibited cortical ex vivo R-(–)-α-methyl[imidazole-2,5(n)-3H]histamine dihydrochloride ([3H]R-α-methylhistamine) binding (ED50 = 0.17 mg/kg) and increased c-Fos immunoreactivity in prefrontal and somatosensory cortex (3 mg/kg). Microdialysis studies demonstrated that GSK189254 (0.3–3 mg/kg p.o.) increased the release of acetylcholine, noradrenaline, and dopamine in the anterior cingulate cortex and acetylcholine in the dorsal hippocampus. Functional antagonism of central H3 receptors was demonstrated by blockade of R-α-methylhistamine-induced dipsogenia in rats (ID50 = 0.03 mg/kg p.o.). GSK189254 significantly improved performance of rats in diverse cognition paradigms, including passive avoidance (1 and 3 mg/kg p.o.), water maze (1 and 3 mg/kg p.o.), object recognition (0.3 and 1 mg/kg p.o.), and attentional set shift (1 mg/kg p.o.). These data suggest that GSK189254 may have therapeutic potential for the symptomatic treatment of dementia in Alzheimers disease and other cognitive disorders.


Journal of Medicinal Chemistry | 2013

Discovery of Epigenetic Regulator I-Bet762: Lead Optimization to Afford a Clinical Candidate Inhibitor of the Bet Bromodomains.

Olivier Mirguet; Romain Luc Marie Gosmini; Jérôme Toum; Catherine A. Clément; Mélanie Barnathan; Jean-Marie Brusq; Jacqueline Elizabeth Mordaunt; Richard Martin Grimes; Miriam Crowe; Olivier Pineau; Myriam Ajakane; Alain Claude-Marie Daugan; Phillip Jeffrey; Leanne Cutler; Andrea Haynes; Nicholas Smithers; Chun-wa Chung; Paul Bamborough; Iain Uings; Antonia Lewis; Jason Witherington; Nigel James Parr; Rab K. Prinjha; Edwige Nicodeme

The bromo and extra C-terminal domain (BET) family of bromodomains are involved in binding epigenetic marks on histone proteins, more specifically acetylated lysine residues. This paper describes the discovery and structure-activity relationships (SAR) of potent benzodiazepine inhibitors that disrupt the function of the BET family of bromodomains (BRD2, BRD3, and BRD4). This work has yielded a potent, selective compound I-BET762 that is now under evaluation in a phase I/II clinical trial for nuclear protein in testis (NUT) midline carcinoma and other cancers.


Trends in Pharmacological Sciences | 2012

Place your BETs: the therapeutic potential of bromodomains

Rab K. Prinjha; Jason Witherington; Kevin Lee

Therapeutic targeting of the processes that regulate histone modification is a growing area of scientific exploration. Although most interest has concentrated on the various families of enzymes that contribute to these processes, this review focuses on emerging data demonstrating the chemical tractability and therapeutic potential of a hitherto underexplored family of proteins, namely the bromodomain (BRD) family of reader proteins. These proteins perform a crucial role in translating histone modifications with powerful transcriptional consequences. We review current knowledge of the biology of this emergent target class and highlight recent breakthroughs that now make the BRD family of reader proteins attractive for drug discovery.


Bioorganic & Medicinal Chemistry Letters | 2012

Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A).

Jonathan Thomas Seal; Yann Lamotte; Frédéric Donche; Anne Marie Jeanne Bouillot; Olivier Mirguet; Francoise Jeanne Gellibert; Edwige Nicodeme; Gael Krysa; Jorge Kirilovsky; Soren Beinke; Scott McCleary; Inma Rioja; Paul Bamborough; Chun-wa Chung; Laurie J. Gordon; Toni Lewis; Ann Louise Walker; Leanne Cutler; David Lugo; David M. Wilson; Jason Witherington; Kevin Lee; Rab K. Prinjha

A novel series of quinoline isoxazole BET family bromodomain inhibitors are discussed. Crystallography is used to illustrate binding modes and rationalize their SAR. One member, I-BET151 (GSK1210151A), shows good oral bioavailability in both the rat and minipig as well as demonstrating efficient suppression of bacterial induced inflammation and sepsis in a murine in vivo endotoxaemia model.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors

Hozefa S. Bandukwala; John Gagnon; Susan Togher; Jason Greenbaum; Edward D. Lamperti; Nigel James Parr; Amy M. H. Molesworth; Nicholas Smithers; Kevin Lee; Jason Witherington; David F. Tough; Rab K. Prinjha; Bjoern Peters; Anjana Rao

Bromodomain-containing proteins bind acetylated lysine residues on histone tails and are involved in the recruitment of additional factors that mediate histone modifications and enable transcription. A compound, I-BET-762, that inhibits binding of an acetylated histone peptide to proteins of the bromodomain and extra-terminal domain (BET) family, was previously shown to suppress the production of proinflammatory proteins by macrophages and block acute inflammation in mice. Here, we investigated the effect of short-term treatment with I-BET-762 on T-cell function. Treatment of naïve CD4+ T cells with I-BET-762 during the first 2 d of differentiation had long-lasting effects on subsequent gene expression and cytokine production. Gene expression analysis revealed up-regulated expression of several antiinflammatory gene products, including IL-10, Lag3, and Egr2, and down-regulated expression of several proinflammatory cytokines including GM-CSF and IL-17. The short 2-d treatment with I-BET-762 inhibited the ability of antigen-specific T cells, differentiated under Th1 but not Th17 conditions in vitro, to induce pathogenesis in an adoptive transfer model of experimental autoimmune encephalomyelitis. The suppressive effects of I-BET-762 on T-cell mediated inflammation in vivo were accompanied by decreased recruitment of macrophages, consistent with decreased GM-CSF production by CNS-infiltrating T cells. These effects were mimicked by an inhibitor of c-myc function, implicating reduced expression of c-myc and GM-CSF as one avenue by which I-BET-762 suppresses the inflammatory functions of T cells. Our study demonstrates that inhibiting the functions of BET-family proteins during early T-cell differentiation causes long-lasting suppression of the proinflammatory functions of Th1 cells.


Bioorganic & Medicinal Chemistry Letters | 2003

5-Aryl-pyrazolo[3,4-b]pyridazines: potent inhibitors of glycogen synthase kinase-3 (GSK-3)

Jason Witherington; Vincent Bordas; David Haigh; Deirdre Mary Bernadette Hickey; Robert J. Ife; Anthony D. Rawlings; Brian P. Slingsby; David Glynn Smith; Robert W. Ward

Introduction of a nitrogen atom into the 6-position of a series of pyrazolo[3,4-b]pyridines led to a dramatic improvement in the potency of GSK-3 inhibition. Rationalisation of the binding mode suggested participation of a putative structural water molecule, which was subsequently confirmed by X-ray crystallography.


The Journal of Physiology | 2006

Evidence that stimulation of ghrelin receptors in the spinal cord initiates propulsive activity in the colon of the rat

Yasutake Shimizu; Ed C. Chang; Anthony D. Shafton; Dorota Ferens; Gareth J. Sanger; Jason Witherington; John B. Furness

Previous studies have failed to reveal an effect of the gastrointestinal peptide hormone ghrelin on colonic motility. In the present work, ghrelin was applied into the lumbo‐sacral spinal cord in the region of defecation control centres, and a synthetic ghrelin receptor agonist, CP464709, which crosses the blood–brain barrier, was applied intravenously or into the lumbo‐sacral cord. Both ghrelin and CP464709 elicited propulsive contractions and emptying of the colon in anaesthetized rats. In conscious rats, subcutaneous CP464709 caused fecal expulsion. The sites of action and nerve pathways involved in the stimulation of the colon by ghrelin receptor activation were investigated in anaesthetized rats. Intrathecal application of CP464709 at L6–S1, but not application at ponto‐medullary levels or to the thoracic spinal cord, elicited propulsive contractions. The stimulation evoked by intravenous CP464709 was prevented if the pelvic nerve outflows were severed, but not if the spinal cord was cut rostral to the defecation centre at L6–S3. The response was also blocked by hexamethonium. When ghrelin, applied intrathecally, was used to desensitize its receptors, the effect of intravenous CP464709 was blocked. CP464709 did not affect small intestine motility or the amplitudes of visceromotor reflexes caused by colorectal distension. It is concluded that activation of ghrelin receptors in the lumbo‐sacral spinal cord triggers co‐ordinated propulsive contractions that empty the colo‐rectum. The pathways through which these responses are generated pass out of the spinal cord via the pelvic nerves and cause propulsive contractions through activation of enteric neurons.


Blood | 2014

Potent antimyeloma activity of the novel bromodomain inhibitors I-BET151 and I-BET762.

Aristeidis Chaidos; Valentina Caputo; Katerina Gouvedenou; Binbin Liu; Ilaria Marigo; Mohammed Suhail Chaudhry; Antonia Rotolo; David F. Tough; Nicholas Smithers; Anna K. Bassil; Trevor D. Chapman; Nicola R. Harker; Olena Barbash; Peter J. Tummino; Niam Al-Mahdi; Andrea Haynes; Leanne Cutler; BaoChau Le; Amin Rahemtulla; Irene Roberts; Maurits F. Kleijnen; Jason Witherington; Nigel James Parr; Rab K. Prinjha; Anastasios Karadimitris

The bromodomain and extraterminal (BET) protein BRD2-4 inhibitors hold therapeutic promise in preclinical models of hematologic malignancies. However, translation of these data to molecules suitable for clinical development has yet to be accomplished. Herein we expand the mechanistic understanding of BET inhibitors in multiple myeloma by using the chemical probe molecule I-BET151. I-BET151 induces apoptosis and exerts strong antiproliferative effect in vitro and in vivo. This is associated with contrasting effects on oncogenic MYC and HEXIM1, an inhibitor of the transcriptional activator P-TEFb. I-BET151 causes transcriptional repression of MYC and MYC-dependent programs by abrogating recruitment to the chromatin of the P-TEFb component CDK9 in a BRD2-4-dependent manner. In contrast, transcriptional upregulation of HEXIM1 is BRD2-4 independent. Finally, preclinical studies show that I-BET762 has a favorable pharmacologic profile as an oral agent and that it inhibits myeloma cell proliferation, resulting in survival advantage in a systemic myeloma xenograft model. These data provide a strong rationale for extending the clinical testing of the novel antimyeloma agent I-BET762 and reveal insights into biologic pathways required for myeloma cell proliferation.


Neuroscience Letters | 2006

Anti-emetic activity of ghrelin in ferrets exposed to the cytotoxic anti-cancer agent cisplatin

John A. Rudd; Man P. Ngan; Man K. Wai; Andrew G. King; Jason Witherington; Paul L.R. Andrews; Gareth J. Sanger

Emesis may be modulated via multiple mechanisms. The actions of ghrelin suggest an ability to couple an induction of hunger with preparation of the stomach for ingestion of food. Such a process might reduce any tendency to vomit, so an anti-emetic activity of ghrelin was investigated in the ferret cisplatin-induced emesis model. In controls, intra-peritoneal cisplatin (10 mg/kg) induced 41.4+/-8.4 episodes of emesis comprising 310.4+/-55.3 retches and 28.8+/-6.9 vomits during the 6h observation; the latency to onset of the first emetic episode was 108.9+/-4.8 min. Intra-peritoneal ghrelin (1mg/kg, split as a 30 min pre- and 30 min-post dose) did not induce a change in behaviour or modify cisplatin-induced emesis (p>0.05). Intracerebroventricular (i.c.v.) administration (third ventricle) was achieved via a pre-implanted cannula. At the first emetic episode following cisplatin, ghrelin or vehicle (20 microl saline) was administered i.c.v. During the 30 min following the initial episode of emesis, control animals exhibited 18.0+/-2.6 emetic episodes comprising 160.3+/-24.1 retches and 13.8+/-2.7 vomits. Ghrelin 10 microg i.c.v. reduced the number of retches by 61.5% (p<0.05) and at a dose of 30 microg i.c.v. ghrelin reduced the number of episodes, individual retches and vomits by 74.4 (p<0.05), 80.4 (p<0.01), and 72.5% (p<0.05), respectively. At subsequent time periods there were no differences between ghrelin- or saline-treated animals (p>0.05). An ability of ghrelin to reduce emesis is consistent with a role in modulating gastro-intestinal functions and identifies a novel approach to the treatment of emesis.


Psychopharmacology | 2009

Cognitive enhancing effects of ghrelin receptor agonists

Zeenat Atcha; Woei-Shin Chen; Agnes B. Ong; Fong-Kuan Wong; Aveline H. Neo; Edward R. Browne; Jason Witherington; Darrel J. Pemberton

RationaleGhrelin, the endogenous ligand for the growth hormone secretagogue receptor, has been shown to play a role in multiple physiological processes including appetite regulation, metabolism and, more recently, dendritic spine architecture, long-term potentiation and cognition.ObjectiveThe objective of this study was to determine the effects of two structurally non-peptide ghrelin receptor agonists (GSK894490A and CP-464709-18) on rodent cognition.MethodsAll experiments were performed in male Lister hooded rats. Effects of the test compounds on rat cognitive performance was determined using the novel object recognition test, a modified water maze paradigm and a scopolamine-induced deficit in cued fear conditioning. These tests were chosen as they each probe a relatively independent cognitive domain and therefore potentially have differing underlying neural substrates.ResultsBoth compounds significantly improved performance in the novel object recognition and modified water maze tests but were unable to attenuate a scopolamine deficit in cued fear conditioning.ConclusionsThese results demonstrate that the small-molecule ghrelin receptor agonists profiled here readily cross the blood/brain barrier and elicit pro-cognitive effects in recognition and spatial learning and memory tests. Based on these observations, the central ghrelin receptor would appear to be a chemically tractable receptor and perhaps should be considered as a new drug target for therapeutic approaches to treat diseases affecting cognition.

Collaboration


Dive into the Jason Witherington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Wilson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark James Bamford

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge