Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jasper R. F. W. Leuven is active.

Publication


Featured researches published by Jasper R. F. W. Leuven.


Environmental Science & Technology | 2013

Novel use of cavity ring-down spectroscopy to investigate aquatic carbon cycling from microbial to ecosystem scales

Damien T. Maher; Isaac R. Santos; Jasper R. F. W. Leuven; Joanne Margaret Oakes; Dirk V. Erler; Matheus Carvalho de Carvalho; Bradley D. Eyre

Development of cavity ring-down spectroscopy (CRDS) has enabled real-time monitoring of carbon stable isotope ratios of carbon dioxide and methane in air. Here we demonstrate that CRDS can be adapted to assess aquatic carbon cycling processes from microbial to ecosystem scales. We first measured in situ isotopologue concentrations of dissolved CO2 ((12)CO2 and (13)CO2) and CH4 ((12)CH4 and (13)CH4) with CRDS via a closed loop gas equilibration device during a survey along an estuary and during a 40 h time series in a mangrove creek (ecosystem scale). A similar system was also connected to an in situ benthic chamber in a seagrass bed (community scale). Finally, a pulse-chase isotope enrichment experiment was conducted by measuring real-time release of (13)CO2 after addition of (13)C enriched phytoplankton to exposed intertidal sediments (microbial scale). Miller-Tans plots revealed complex transformation pathways and distinct isotopic source values of CO2 and CH4. Calculations of δ(13)C-DIC based on CRDS measured δ(13)C-CO2 and published fractionation factors were in excellent agreement with measured δ(13)C-DIC using isotope ratio mass spectroscopy (IRMS). The portable CRDS instrumentation used here can obtain real-time, high precision, continuous greenhouse gas data in lakes, rivers, estuaries and marine waters with less effort than conventional laboratory-based techniques.


Journal of Geophysical Research | 2015

Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments

Tjalling de Haas; Lisanne Braat; Jasper R. F. W. Leuven; Ivar R. Lokhorst; Maarten G. Kleinhans

Predicting debris flow runout is of major importance for hazard mitigation. Apart from topography and volume, runout distance and area depends on debris flow composition and rheology, but how is poorly understood. We experimentally investigated effects of composition on debris flow runout, depositional mechanisms, and deposit geometry. The small-scale experimental debris flows were largely similar to natural debris flows in terms of flow behavior, deposit morphology, grain size sorting, channel width-depth ratio, and runout. Deposit geometry (lobe thickness and width) in our experimental debris flows is largely determined by composition, while the effects of initial conditions of topography (i.e., outflow plain slope and channel slope and width) and volume are negligible. We find a clear optimum in the relations of runout with coarse-material fraction and clay fraction. Increasing coarse-material concentration leads to larger runout. However, excess coarse material results in a large accumulation of coarse debris at the flow front and enhances diffusivity, increasing frontal friction and decreasing runout. Increasing clay content initially enhances runout, but too much clay leads to very viscous flows, reducing runout. Runout increases with channel slope and width, outflow plain slope, debris flow volume, and water fraction. These results imply that debris flow runout depends at least as much on composition as on topography. This study improves understanding of the effects of debris flow composition on runout and may aid future debris flow hazard assessments.Predicting debris flow runout is of major importance for hazard mitigation. Apart from topography and volume, runout distance and area depends on debris flow composition and rheology, but how is poorly understood. We experimentally investigated effects of composition on debris flow runout, depositional mechanisms, and deposit geometry. The small-scale experimental debris flows were largely similar to natural debris flows in terms of flow behavior, deposit morphology, grain size sorting, channel width-depth ratio, and runout. Deposit geometry (lobe thickness and width) in our experimental debris flows is largely determined by composition, while the effects of initial conditions of topography (i.e., outflow plain slope and channel slope and width) and volume are negligible. We find a clear optimum in the relations of runout with coarse-material fraction and clay fraction. Increasing coarse-material concentration leads to larger runout. However, excess coarse material results in a large accumulation of coarse debris at the flow front and enhances diffusivity, increasing frontal friction and decreasing runout. Increasing clay content initially enhances runout, but too much clay leads to very viscous flows, reducing runout. Runout increases with channel slope and width, outflow plain slope, debris flow volume, and water fraction. These results imply that debris flow runout depends at least as much on composition as on topography. This study improves understanding of the effects of debris flow composition on runout and may aid future debris flow hazard assessments.


Earth Surface Processes and Landforms | 2018

Topographic forcing of tidal sandbar patterns for irregular estuary planforms

Jasper R. F. W. Leuven; T. de Haas; Lisanne Braat; Maarten G. Kleinhans

Estuaries typically show converging planforms from the sea into the land. Nevertheless, their planform is rarely perfectly exponential and often shows curvature and presence of embayments. Here we test the degree to which the shapes and dimensions of tidal sand bars depend on estuary planform. We assembled a dataset with 35 estuary planforms and properties of 190 tidal bars to induce broad-brush but significant empirical relations between channel planform, hydraulic geometry and bar pattern, and test a linear stability theory for bar pattern. We found that the location where bars form is largely controlled by the excess width of a channel, which is calculated as the observed channel width minus the width of an ideal exponentially widening estuary. In general, the summed width of bars approximates the excess width as measured in the along-channel variation of three estuaries for which bathymetry was available as well as for the local measurements in the 35 investigated estuaries. Bar dimensions can be predicted by either the channel width or the tidal prism, because channel width also strongly depends on local tidal prism. Also braiding index was predicted within a factor 2 from excess width divided by the predicted bar width. Our results imply that estuary planform shape, including mud flats and salt marsh, as well as bar pattern depend on inherited Holocene topography and lithology and that eventually convergent channels will form if sufficient sediment is available.


Geology | 2018

Dimensions of fluvial-tidal meanders: Are they disproportionally large?

Jasper R. F. W. Leuven; Barend van Maanen; Bente R. Lexmond; Bram V. van der Hoek; Matthijs J. Spruijt; Maarten G. Kleinhans

Many of the world’s major river systems seemingly have one or a few disproportionally large meanders, with tight bends, in the fluvial-tidal transition (e.g., the Thames in the UK, and the Salmon River in Canada). However, quantitative studies on meanders have so far primarily focused on rivers without tidal influence or on small tidal meanders without river inflow, providing relations between channel geometry and meander characteristics (length, amplitude, and sinuosity). Physics-based predictions of meander size and shape for the fluvial-tidal transition zone remain untested for a lack of data. Therefore, it remains unclear whether the dimensions of meanders in the fluvial-tidal transition zone are indeed disproportionally large, and whether meander characteristics can be used as an indicator for tidal influence. Here, data from 823 meanders in 68 fluvial-tidal transition zones worldwide are presented that reveal broad-brush relations between channel geometry and meander dimensions. Our results show that fluvial-tidal meanders indeed become larger in the seaward direction, but the dimensions are proportional to local channel width, as in rivers. Sinuosity maxima are an exception, rather than the rule, in the fluvial-tidal transition zone. Surprisingly, the width of the upstream river correlates with estuarine channel width and tidal meander size even though river discharge constitutes only a fraction of the tidal prism. The new scaling relations can be used to constrain dimensions of rivers and estuaries and their meanders.


Food Science and Nutrition | 2018

School gardening increases knowledge of primary school children on edible plants and preference for vegetables

Jasper R. F. W. Leuven; Annerie H. M. Rutenfrans; Alexander G. Dolfing; R.S.E.W. Leuven

Abstract At least 10% of children worldwide are diagnosed with overweight. Part of this problem is attributed to low vegetable intake, for which preference at a younger age is an indicator. Few studies examined long‐term effects of school garden interventions on the knowledge about and preference for vegetables. Therefore, in this study, an intervention period of 7 months (17 lessons) was organized for primary school students (n = 150) of age 10–12 years in the Municipality of Nijmegen (the Netherlands). Surveys were conducted before and after the intervention period to test the ability of students to identify vegetables, to measure their self‐reported preference for vegetables, and to analyze students’ attitudes toward statements about gardening, cooking, and outdoor activity. The long‐term effects were measured by repeating the survey 1 year after the intervention (n = 52). Results were compared with a control group of students (n = 65) with similar background and tested for significance with α = 0.05. School gardening significantly increases the knowledge of primary schoolchildren on 10 vegetables as well as their ability to self‐report preference for the vegetables. The short‐term (n = 106) and long‐term (n = 52) preference for vegetables increased (p < 0.05) in comparison with the control group. The latter did not show a significant learning effect (p > 0.05). This implies that the exposure to vegetables generated by school gardening programs may increase willingness to taste and daily intake of vegetables on the long term. Students’ attitudes toward gardening, cooking, and outdoor activity were unaffected by the intervention.


Earth Surface Processes and Landforms | 2018

Effects of estuarine mudflat formation on tidal prism and large-scale morphology in experiments: Effects of estuarine mud on tidal prism and morphology

Lisanne Braat; Jasper R. F. W. Leuven; Ivar R. Lokhorst; Maarten G. Kleinhans

Human interference in estuaries has led to increasing problems of mud, such as hyper-turbidity with adverse ecological effects and siltation of navigation channels and harbours. To deal with this mud sustainably, it is important to understand its long-term effects on the morphology and dynamics of estuaries. The aim of this study is to understand how mud affects the morphological evolution of estuaries. We focus on the effects of fluvial mud supply on the spatial distribution of mudflats and on how this influences estuary width, depth, surface area and dynamics over time. Three physical experiments with self-forming channels and shoals were conducted in a new flume type suitable for tidal experiments: the Metronome. In two of the experiments, we added nutshell grains as mud simulant, which is transported in suspension. Time-lapse images of every tidal cycle and digital elevation models for every 500 cycles were analysed for the three experiments. Mud settles in distinct locations, forming mudflats on bars and sides of the estuary, where the bed elevation is higher. Two important effects of mud were observed: the first is the slight cohesiveness of mud that causes stability on bars limiting vertical erosion, although the bank erosion rate by migrating channels is unaffected. Secondly, mud fills inactive areas and deposits at higher elevations up to the high-water level and therefore decreases the tidal prism. These combined effects cause a decrease in dynamics in the estuary and lead to near-equilibrium planforms that are smaller in volume and especially narrower upstream, with increased bar heights and no channel deepening. This trend is in contrast to channel deepening in rivers by muddier floodplain formation. These results imply large consequences for long-term morphodynamics in estuaries that become muddier due to management practices, which deteriorate ecological quality of intertidal habitats but may create potential area for marshes.


Earth Surface Processes and Landforms | 2018

Location and probability of shoal margin collapses in a sandy estuary: SHOAL MARGIN COLLAPSES IN A SANDY ESTUARY

Wout M. van Dijk; Dick R. Mastbergen; Geeralt A. van den Ham; Jasper R. F. W. Leuven; Maarten G. Kleinhans

Channel bank failure, collapses of shoal margins and beaches due to flow slides have been recorded in Dutch estuaries for the past 200 years but have hardly been recognized elsewhere. Current predictions lack forecasting capabilities, because they were validated and calibrated for historic data of cross‐sections in specific systems, allowing local hindcast rather than location and probability forecasting. The objectives of this study are to investigate where on shoal margins collapses typically occur and what shoal margin collapse geometries and volumes are, such that we can predict their occurrence. We identified shoal margin collapses, generally completely submerged, from bathymetry data by analyzing DEMs of Difference (DoD) of the Western Scheldt for the period 1959‐2015. We used the bathymetry data to determine the conditions for occurrence, specifically to obtain slope height and angle and applied these variables in a shoal margin collapse predictor. We found 299 collapses along 300 km of shoal margin boundaries over 56 years, meaning more than 5 collapses occur on average per year. The average shoal margin collapse body is well approximated by a 1/3 ellipsoid shape, covers on average an area of 34,000 m2 and has an average volume of 100,000 m3. Shoal margin collapses occur mainly at locations where shoals take up a proportionally larger area than average in the cross‐section of the entire estuary, and occur most frequently where lateral shoal margin displacement is low. A receiver operating characteristic curve shows that the forecasting method predicts the shoal margin collapse location well. We conclude that the locations of the shoal margin collapses are well predicted by the variation in conditions of the relative slope height and angle within the Western Scheldt, and likely locations are at laterally relatively stable shoal margins. This provides hypotheses aiding the recognition of these features in sandy estuaries worldwide.


Earth-Science Reviews | 2016

Tidal sand bar dimensions and shapes in estuaries

Jasper R. F. W. Leuven; Maarten G. Kleinhans; Steven Weisscher; M. van der Vegt


Earth Surface Dynamics Discussions | 2017

Effects of mud supply on large-scale estuary morphology and development over centuries to millennia

Lisanne Braat; Thijs van Kessel; Jasper R. F. W. Leuven; Maarten G. Kleinhans


Sedimentology | 2017

Scour holes and ripples occur below the hydraulic smooth to rough transition of movable beds

Maarten G. Kleinhans; Jasper R. F. W. Leuven; Lisanne Braat; Anne W. Baar

Collaboration


Dive into the Jasper R. F. W. Leuven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge