Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaume Adan is active.

Publication


Featured researches published by Jaume Adan.


Oligonucleotides | 2004

Use of siRNAs and Antisense Oligonucleotides Against Survivin RNA to Inhibit Steps Leading to Tumor Angiogenesis

Silvia Coma; Véronique Noé; Cinzia Lavarino; Jaume Adan; Manuel Rivas; Mariana López-Matas; Roser Pagan; Francesc Mitjans; Senén Vilaró; Jaume Piulats; Carlos J. Ciudad

The antiapoptotic protein survivin is an attractive target in cancer therapy because it is expressed differently in tumors and normal tissues and it is potentially required for cancer cells to remain viable. Given that survivin is also overexpressed in endothelial cells (ECs) of newly formed blood vessels found in tumors, its RNA targeting might compromise EC viability and interfere with tumor angiogenesis. We used two antisense strategies against survivin expression, antisense oligonucleotides (aODN) and small interfering RNA (siRNA), to study in ECs the contribution of survivin in various steps leading to tumor angiogenesis. A 21-mer phosphorothioate aODN and two siRNA oligonucleotides against survivin mRNA were designed to downregulate survivin expression. Survivin targeting caused (1) a strong growth-inhibitory effect, (2) a 4-fold increase in apoptosis, (3) an accumulation of cells in the S phase and a decrease in G2/M phase, (4) a dose-dependent inhibition of EC migration on Vitronectin, and (5) a decrease in capillary formation. Control oligonucleotides, an unrelated oligonucleotide, and one with four mismatches, had no significant effect. All these results show that survivin is a suitable target in cancer therapy because its inhibition in EC causes both a proapoptotic effect and an interruption of tumor angiogenesis. The two strategies used, classic aODN and siRNA technology, were very effective. Moreover, the latter can be used in the low nanomolar range, thus increasing the sensitivity of the treatment.


PLOS ONE | 2013

Therapeutic Targeting of Tumor Growth and Angiogenesis with a Novel Anti-S100A4 Monoclonal Antibody

Jose Luis Hernández; Laura Padilla; Sheila Dakhel; Toni Coll; Rosa Hervas; Jaume Adan; Marc Masa; Francesc Mitjans; Josep Maria Martínez; Silvia Coma; Laura Rodríguez; Véronique Noé; Carlos J. Ciudad; Francesc Blasco; Ramon Messeguer

S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. We demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF), via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results we developed 5C3, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.


Brain Research | 1997

Effects of NMDA-R1 antisense oligodeoxynucleotide administration: behavioral and radioligand binding studies

Agustin Zapata; Jordi L. Capdevila; Gemma Tarrason; Jaume Adan; Josep Maria Martínez; Jaume Piulats; Ramon Trullas

The effects of an antisense phosphodiester oligodeoxynucleotide (ODN) directed to the NR1 subunit of the NMDA receptor mRNA and of its corresponding sense ODN were investigated in mice. Treatment with the antisense ODN significantly increased the time mice spent in the open arms of an elevated maze while the total number of arm entries was unaltered. Furthermore, seizure latencies after the administration of an ED100 dose of NMDA (150 mg/kg) were significantly higher in antisense treated animals compared to vehicle controls. At the same time, treatment with NR1 antisense ODN significantly reduced the Bmax of [3H]CGS-19755 binding (2101 fmol/mg protein) compared to both vehicle (2787 fmol/mg protein) and sense (2832 +/- 39 fmol/mg protein) controls without any significant change in KD (33 nM). A corresponding reduction of [3H]CGP-39653 binding was also observed after treatment with NR1 antisense compared to both sense and vehicle controls. In contrast, neither antisense nor sense ODNs altered the proportion of high affinity glycine sites or the potency of glycine at either high or low affinity glycine binding sites to inhibit [3H]CGP-39653 binding. These results show that in vivo treatment with NR1 antisense ODNs to the NMDA receptor complex reduces antagonist binding at NMDA receptors and has pharmacological effects similar to those observed with some NMDA receptor antagonists. These results also suggest that treatment with antisense ODNs may provide another means to investigate allosteric modulation of receptor subtypes in vivo.


BMC Cancer | 2010

Overexpression of S100A4 in human cancer cell lines resistant to methotrexate

Núria Mencia; Elisabet Selga; Isabel Rico; M. Cristina de Almagro; Xenia Villalobos; Sara Ramírez; Jaume Adan; Jose Luis Hernández; Véronique Noé; Carlos J. Ciudad

BackgroundMethotrexate is a chemotherapeutic drug that is used in therapy of a wide variety of cancers. The efficiency of treatment with this drug is compromised by the appearance of resistance. Combination treatments of MTX with other drugs that could modulate the expression of genes involved in MTX resistance would be an adequate strategy to prevent the development of this resistance.MethodsThe differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. A global comparison of all the studied cell lines was performed in order to find out differentially expressed genes in the majority of the MTX-resistant cells. S100A4 mRNA and protein levels were determined by RT-Real-Time PCR and Western blot, respectively. Functional validations of S100A4 were performed either by transfection of an expression vector for S100A4 or a siRNA against S100A4. Transfection of an expression vector encoding for β-catenin was used to inquire for the possible transcriptional regulation of S100A4 through the Wnt pathway.ResultsS100A4 is overexpressed in five out of the seven MTX-resistant cell lines studied. Ectopic overexpression of this gene in HT29 sensitive cells augmented both the intracellular and extracellular S100A4 protein levels and caused desensitization toward MTX. siRNA against S100A4 decreased the levels of this protein and caused a chemosensitization in combined treatments with MTX. β-catenin overexpression experiments support a possible involvement of the Wnt signaling pathway in S100A4 transcriptional regulation in HT29 cells.ConclusionsS100A4 is overexpressed in many MTX-resistant cells. S100A4 overexpression decreases the sensitivity of HT29 colon cancer human cells to MTX, whereas its knockdown causes chemosensitization toward MTX. Both approaches highlight a role for S100A4 in MTX resistance.


Cerebrovascular Diseases | 2000

Serum amino acid levels after permanent middle cerebral artery occlusion in the rat.

Núria Puig; Antoni Dávalos; Jaume Adan; Jaume Piulats; Josep Maria Martínez; José Castillo

Background and Purpose: High levels of glutamate in plasma and cerebrospinal fluid (CSF) have been demonstrated in patients with acute ischemic stroke. Whereas this glutamate increase in CSF is only evidenced during the first 6 h in stable ischemic stroke, it is sustained for 24 h in progressing stroke. The aim of this investigation was to study the evolution of serum glutamate levels after stroke in a rat model of permanent cerebral artery occlusion. Methods: Glutamate, glycine, aspartate, taurine and tryptophan were measured by high-performance liquid chromatography from serum samples taken before and at different times after permanent middle cerebral artery occlusion (MCAO) and from sham-operated rats. Results: After MCAO, a 3-fold increase in glutamate and a 2-fold increase in glycine and aspartate were observed in rat serum. The onset of this amino acid increase began 4–6 h after ischemic induction, reached peak values at 8–24 h and returned to preischemic values by 48–72 h. Serum concentrations of taurine and tryptophan were not modified after MCAO. Sham-operated rats did not exhibit changes of basal amino acid concentrations in serum. Conclusions: The serum excitatory amino acid profile in this experimental model confirms that the early detection of increased concentrations of glutamate and glycine at systemic circulation observed in patients with acute stroke is a consequence of the cerebral ischemic process.


Angiogenesis | 2004

Anti-migratory and anti-angiogenic effect of p16: A novel localization at membrane ruffles and lamellipodia in endothelial cells

Elena Alhaja; Jaume Adan; Roser Pagan; Francesc Mitjans; Manel Cascallo; Mercè Rodríguez; Véronique Noé; Carlos J. Ciudad; Adela Mazo; Senén Vilaró; Jaume Piulats

Recent evidence has established different functions for the tumor suppressor protein, p16INK4A aside from controlling the cell cycle. Here we report that cdk4/6 inhibition blocked both human umbilical vein endothelial cells (HUVEC) spreading on a vitronectin matrix and HUVEC migration on vitronectin. p16 can also act as an anti-angiogenic molecule in vitro since HUVEC and HMEC cells transfected with Ad-p16 or treated with Antennapedia p16 peptides are unable to differentiate on a Matrigel matrix. Both, p16, cyclin D1, cdk4 and cdk6 were immuno-colocalized with Ezrin, Rac, Vinculin, αv-integrin, and FAK proteins in the ruffles and lamellipodia of migratory cells. Our results indicate that p16 is a key component of a new cytoplasmic pathway controlling angiogenesis of endothelial cells via the αvβ3-integrin-mediated migration.


Oncogenesis | 2014

S100P antibody-mediated therapy as a new promising strategy for the treatment of pancreatic cancer

Sheila Dakhel; Laura Padilla; Jaume Adan; Marc Masa; Josep Maria Martínez; Lúcia Roque; Toni Coll; Rosa Hervas; Carmen Calvis; Ramon Messeguer; Francesc Mitjans; Jordi Hernández

Despite progresses in diagnosis and treatment, pancreatic cancer continues to have the worst prognosis of all solid malignant tumors. Recent evidences suggest that the metastasis-promoting protein S100P stimulates pancreatic tumor proliferation, survival, invasion and metastasis progression through extracellular functions. Moreover, its expression is strongly correlated with poor prognosis in patients with several types of cancer although the entire molecular mechanism responsible for the diverse biological functions is not fully understood. We showed that extracellular S100P stimulates pancreatic carcinoma BxPC3 cell line by promoting cell proliferation. We also demonstrated that S100P induces, in this cell line, the phosphorylation of IκBα and the secretion of matrix metalloproteinase 9 (MMP-9). In addition, treatment with S100P protected cells from injuries induced by the cytotoxic agent Gemcitabine. On the basis of these results, we developed function-blocking anti-S100P monoclonal antibodies (mAbs) that abolished all of its in vitro activities. Furthermore, in vivo treatment with the candidate 2H8 antibody decreased tumor growth and liver metastasis formation in a subcutaneous and orthotopic BxPC3 tumor model. We conclude here that a therapeutic strategy blocking the extracellular activity of S100P by means of specific mAbs could be an attractive therapeutic approach as a single agent or in combination with target-directed or chemotherapeutic drugs to treat pancreatic cancer.


International Journal of Nanomedicine | 2014

In vivo anticancer evaluation of the hyperthermic efficacy of anti-human epidermal growth factor receptor-targeted PEG-based nanocarrier containing magnetic nanoparticles

Giovanni Baldi; Costanza Ravagli; Filippo Mazzantini; George Loudos; Jaume Adan; Marc Masa; Dimitrios Psimadas; Eirini Fragogeorgi; Erica Locatelli; Claudia Innocenti; Claudio Sangregorio; Mauro Comes Franchini

Polymeric nanoparticles with targeting moieties containing magnetic nanoparticles as theranostic agents have considerable potential for the treatment of cancer. Here we report the chemical synthesis and characterization of a poly(D,L-lactide-co-glycolide)-b-poly(ethylene glycol)-based nanocarrier containing iron oxide nanoparticles and human epithelial growth factor receptor on the outer shell. The nanocarrier was also radiolabeled with 99mTc and tested as a theranostic nanomedicine, ie, it was investigated for both its diagnostic ability in vivo and its therapeutic hyperthermic effects in a standard A431 human tumor cell line. Following radiolabeling with 99mTc, the biodistribution and therapeutic hyperthermic effects of the nanosystem were studied noninvasively in vivo in tumor-bearing mice. A substantial decrease in tumor size correlated with an increase in both nanoparticle concentration and local temperature was achieved, confirming the possibility of using this multifunctional nanosystem as a therapeutic tool for epidermoid carcinoma.


Neuropharmacology | 1999

In vitro and in vivo protective effect of orphenadrine on glutamate neurotoxicity

Francesc X. Sureda; Cecilia Gabriel; Mercè Pallàs; Jaume Adan; Josep Maria Martínez; Elena Escubedo; Jorge Camarasa; A. Camins

The anticholinergic drug orphenadrine is used in the treatment of Parkinsons disease. In this study we evaluate the neuroprotective effects of orphenadrine on excitotoxicity in vivo and in vitro. Orphenadrine prevented the mitochondrial and the cytoplasmic membrane potential decrease evoked by NMDA (100 microM) in rat dissociated cerebellar granule cells showing an IC50 value of 11.6 +/- 4.7 microM (mean +/- SEM, n = 5) and 13.5 +/- 2.3 microM (n = 3), respectively. Orphenadrine was able to protect cerebellar granule cell cultures from glutamate-induced neurotoxicity. Kainic acid (KA, 10 mg/kg)-induced excitotoxicity was evaluated in vivo using the microglial marker peripheral-type benzodiazepine receptor (PBR) and heat shock protein 72 (HSP72) expression in the hippocampus. The Bmax of PBR for control tissues was 589.1 +/- 40.0 fmol/mg protein (n = 4), increasing to 1692.5 +/- 51.6 fmol/mg protein (n = 5) after the KA treatment. Pretreatment with orphenadrine (10 mg/kg) blocked the KA-induced increase in PBR density. As expected, KA-administration induced the expression of HSP72 that was blocked in the orphenadrine + KA-treated rats. We demonstrate that orphenadrine, interacting at the NMDA receptor, is able to prevent the neurotoxicity mediated by activation at glutamate ionotropic receptors.


Bioconjugate Chemistry | 2014

Tackling lipophilicity of peptide drugs: replacement of the backbone N-methyl group of cilengitide by N-oligoethylene glycol (N-OEG) chains.

Ana I. Fernández-Llamazares; Jaume Adan; Francesc Mitjans; Jan Spengler; Fernando Albericio

Cilengitide is an RGD-peptide of sequence cyclo[RGDfNMeV] that was was developed as a highly active and selective ligand for the αvβ3 and αvβ5 integrin receptors. We describe the synthesis of three analogues of this peptide in which the N-Me group has been replaced by N-oligoethylene glycol (N-OEG) chains of increasing size: namely N-OEG2, N-OEG11, and N-OEG23, which are respectively composed of 2, 11, and 23 ethylene oxide monomer units. The different N-OEG cyclopeptides and the original peptide were compared with respect to lipophilicity and biological activity. The N-OEG2 analogue was straightforward to synthesize in solid phase using an Fmoc-N-OEG2 building block. The syntheses of the N-OEG11 and N-OEG23 cyclopeptides are hampered by the increased steric hindrance of the N-substituent, and could only be achieved by segment coupling, which takes place with epimerization and thus requires extensive product purification. All the N-OEG analogues were found to be more hydrophobic than the parent peptide, and their hydrophobicity was systematically enhanced upon increasing the length of the OEG chain. The N-OEG2 cyclopeptide displayed the same capacity as Cilengitide to inhibit the integrin-mediated adhesion of HUVEC endothelial, DAOY gliobastoma, and HT-29 colon cancer cells to their ligands vitronectin and fibrinogen. The N-OEG11 and N-OEG23 analogues also inhibited cell adhesion to these immobilized ligands, but their IC50 values dropped by 1 order of magnitude with respect to the parent peptide. These results indicate that replacement of the backbone N-Me group of Cilengitide by a short N-OEG chain provides a more lipophilic analogue with a similar biological activity. Upon increasing the size of the N-OEG chain, liophilicity is enhanced, but synthetic yields drop and the longer polymer chains may impede targeted binding.

Researchain Logo
Decentralizing Knowledge