Jaume Garcia-Amorós
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jaume Garcia-Amorós.
Beilstein Journal of Organic Chemistry | 2012
Jaume Garcia-Amorós; Dolores Velasco
Summary Photochromic switches that are able to transmit information in a quick fashion have attracted a growing interest within materials science during the last few decades. Although very fast photochromic switching materials working within hundreds of nanoseconds based on other chromophores, such as spiropyranes, have been successfully achieved, reaching such fast relaxation times for azobenzene-based photochromic molecular switches is still a challenge. This review focuses on the most recent achievements on azobenzene-based light-driven real-time information-transmitting systems. Besides, the main relationships between the structural features of the azo-chromophore and the thermal cis-to-trans isomerisation, the kinetics and mechanism are also discussed as a key point for reaching azoderivatives endowed with fast thermal back-isomerisation kinetics.
Journal of Materials Chemistry | 2011
Jaume Garcia-Amorós; Heino Finkelmann; Dolores Velasco
Nematic liquid single crystal elastomers (LSCEs) that contain azobenzenes as cross-linkers have a clear application in the field of light-controlled actuators. They are able to modify their macroscopic dimensions upon irradiation with UV light and furthermore relax back thermally or by irradiation with visible light. Many efforts have been put forward to improve the photo-mechanical effect. However, there are no previous studies about the role of the length of the photo-active cross-linker spacer on the opto-mechanics of light-controlled actuators. In this way, we have prepared several photo-active side-chain nematic polysiloxane LSCEs that contain 4,4′-dialkoxyazobenzenes as cross-linkers, which bear spacers of different lengths. The opto-mechanical behaviour of the different LSCEs prepared has been analyzed. The use of photo-active cross-linkers with long spacers yields actuators with higher mechanical responses under irradiation with UV light. Neither the irradiation nor the thermal relaxation time of the actuator depends on the spacer length.
Journal of the American Chemical Society | 2015
Yang Zhang; Subramani Swaminathan; Sicheng Tang; Jaume Garcia-Amorós; Marcia Boulina; Burjor Captain; James D. Baker; Francìisco M. Raymo
Self-assembling nanoparticles of amphiphilic polymers can transport hydrophobic molecules across hydrophilic media and, as a result, can be valuable delivery vehicles for a diversity of biomedical applications. Strategies to monitor their dynamics noninvasively and in real time are, therefore, essential to investigate their translocation within soft matrices and, possibly, rationalize the mechanisms responsible for their diffusion in biological media. In this context, we designed molecular guests with photoactivatable fluorescence for these supramolecular hosts and demonstrated that the activation of the fluorescent cargo, under optical control, permits the tracking of the nanocarrier translocation across hydrogel matrices with the sequential acquisition of fluorescence images. In addition, the mild illumination conditions sufficient to implement these operating principles permit fluorescence activation within developing Drosophila melanogaster embryos and enable the monitoring of the loaded nanocarriers for long periods of time with no cytotoxic effects and no noticeable influence on embryogenesis. These photoresponsive compounds combine a borondipyrromethene (BODIPY) chromophore and a photocleavable oxazine within their covalent skeleton. Under illumination at an appropriate activation wavelength, the oxazine ring cleaves irreversibly to bring the adjacent BODIPY fragment in conjugation with an indole heterocycle. This structural transformation shifts bathochromically the BODIPY absorption and permits the selective excitation of the photochemical product with concomitant fluorescence. In fact, these operating principles allow the photoactivation of BODIPY fluorescence with large brightness and infinite contrast. Thus, our innovative structural design translates into activatable fluorophores with excellent photochemical and photophysical properties as well as provides access to a general mechanism for the real-time tracking of supramolecular nanocarriers in hydrophilic matrices.
Organic Letters | 2011
Jaume Garcia-Amorós; Alexandra Piñol; Heino Finkelmann; Dolores Velasco
Para-substituted azophenols exhibit a fast thermal cis-to-trans isomerization rate in ethanol, which can be transferred to the solid state by obtaining liquid-crystalline elastomeric systems. The absence of protic solvent is compensated by the establishment of hydrogen bonding between azophenol monomers that are close to each other. Opto-mechanical experiments reveal that azophenol-containing liquid single-crystal elastomers are valuable materials for light-controlled actuators exhibiting relaxation times of 1 s at room temperature.
Chemistry: A European Journal | 2011
Jaume Garcia-Amorós; Heino Finkelmann; Dolores Velasco
It is well known that the proper substitution of the azobenzene core allows tuning the thermal cis-to-trans isomerisation kinetics of azo dyes. The thermal isomerisation process of nitro-substituted azobenzenes is accelerated up to 13 times with respect to that in the common isotropic solvents when they are doped in nematic low molar mass liquid crystals. This kinetic acceleration is even stronger when these azo dyes are covalently linked to a nematic siloxane polymer. In this environment, the isomerisation process is accelerated more than 10(3) times. This effect is presented herein for the first time. The possible application of the networks obtained as possible photo-actuators has been also considered.
Journal of the American Chemical Society | 2016
Pierre Beaujean; Flavie Bondu; Aurélie Plaquet; Jaume Garcia-Amorós; Janet Cusido; Françisco M. Raymo; Frédéric Castet; Vincent Rodriguez; Benoît Champagne
A combined experimental-theoretical investigation has revealed that oxazine-based compounds are multiaddressable, multistate, and multifunctional molecular switches exhibiting contrasts of both linear and second-order nonlinear optical properties. The switching properties are particularly large when the substituent is a donor group. In this study, the cleavage of the C-O bond at the junction of the indole and oxazine cycles (of the closed a forms) is acido-triggered, leading to an open form (b(+)) characterized by larger first hyperpolarizabilities (βHRS) and smaller excitation energies than in the closed form. These results are confirmed and interpreted utilizing ab initio calculations that have been carried out on a broad set of compounds to unravel the role of the substituent. With respect to acceptor groups, oxazines bearing donor groups are characterized not only by larger βHRS and βHRS contrast ratios but also by smaller excitation energies, larger opening-induced charge transfer, and reduction of the bond length alternation, as well as smaller Gibbs energies of the opening reaction. Compared to protonated open forms (b(+)), calculations on the zwitterionic open forms (b) have pointed out similarities in the long-wavelength UV/vis absorption spectra, whereas their βHRS values might differ strongly as a function of the substituent. Indeed, the open forms present two NLOphores, the indoleninium-substituent entity and the nitrophenol (present in the protonated open form, b(+)) or nitrophenolate (present in the zwitterionic open form, b) moiety. Then, nitrophenolate displays a larger first hyperpolarizability than nitrophenol and the β tensor of the two entities might reinforce or cancel each other.
Chemical Communications | 2011
Jaume Garcia-Amorós; Santi Nonell; Dolores Velasco
Push-pull azophenols are valuable target molecules for stable photo-driven optical oscillators. Hydroxyazopyridinium methyl iodide salts show oscillation frequencies up to 10 kHz with no signs of fatigue upon continuous work.
Chemistry: A European Journal | 2014
Jaume Garcia-Amorós; Subramani Swaminathan; Salvatore Sortino; Françisco M. Raymo
The covalent attachment of a carbazole fluorophore to an oxazine photochrome permits the reversible activation of fluorescence under optical control. Ultraviolet irradiation with a pulsed laser opens the oxazine ring to shift bathochromically the absorption of the carbazole component. Concomitant visible illumination excites selectively the carbazole fluorophore of the photochemical product to produce fluorescence. The photogenerated and fluorescent species reverts spontaneously on a submicrosecond timescale to the initial nonemissive state of the carbazole-oxazine dyad. The photochemical and photophysical properties engineered into this particular molecular switch allow the convenient monitoring of plasmonic effects on photochemical reactions with fluorescence measurements. In close proximity to silver nanoparticles, visible illumination with a continuous-wave laser also results in fluorescence activation. The metallic nanostructures enable the two-photon excitation of the oxazine component to induce the photochromic transformation and then facilitate the one-photon excitation of the photochemical product to generate fluorescence. Thus, these operating principles offer the opportunity to avoid altogether the need of pulsed ultraviolet irradiation to trigger the photochromic transformation and, instead, allow fluorescence activation with a single visible source operating at low illumination power.
Journal of Materials Chemistry C | 2014
Jaume Garcia-Amorós; Audrius Bučinskas; Marta Reig; Santi Nonell; Dolores Velasco
In search of strategies to improve the switching speeds and fatigue resistances of photochromic molecular switches, we have analysed the kinetic behaviour of a series of photoactive azoderivatives which combine the strong electron withdrawing character of both thiazolium and benzothiazolium salts with the ability of azophenols to establish keto–enolic equilibrium. The excitation of these molecules with a green laser at 532 nm, a wavelength that is compatible with biological applications, induces trans-to-cis photoisomerisation in less than 5 ns. The photogenerated cis isomer reverts to the thermodynamically stable trans form with lifetimes as short as 55 ns in ethanol at room temperature. Thus, a full switching cycle can be completed on a nanosecond timescale. To the best of our knowledge, these are the fastest molecular photochromic switches found heretofore. Furthermore, all of the switches reported herein are able to tolerate thousands of switching cycles with no sign of decomposition, even in the presence of molecular oxygen, which is convenient for further technological applications. In addition, these molecules can be adsorbed onto microcrystalline cellulose thereby exhibiting a thermal isomerisation rate as fast as that observed in alcoholic solutions. This feature affords novel solid switchable materials which operate under similar conditions with nanosecond switching speeds.
Journal of Materials Chemistry C | 2016
Yang Zhang; Jaume Garcia-Amorós; Burjor Captain; Françisco M. Raymo
An indolizine heterocycle switches from a nonemissive to an emissive form upon protonation. The co-entrapment of this molecular switch and a photoacid generator in polymer films allows the imprinting of fluorescent patterns in the resulting materials. These operating principles permit the writing and reading of information under optical control.