Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaume Piñol is active.

Publication


Featured researches published by Jaume Piñol.


Journal of Bacteriology | 2006

Mycoplasma genitalium P140 and P110 Cytadhesins Are Reciprocally Stabilized and Required for Cell Adhesion and Terminal-Organelle Development

Raul Burgos; Oscar Q. Pich; Mario Ferrer-Navarro; Joel B. Baseman; Enrique Querol; Jaume Piñol

Mycoplasma genitalium is a human pathogen that mediates cell adhesion by a complex structure known as the attachment organelle. This structure is composed of cytadhesins and cytadherence-associated proteins, but few data are available about the specific role of these proteins in M. genitalium cytadherence. We have deleted by homologous recombination the mg191 and mg192 genes from the MgPa operon encoding the P140 and P110 cytadhesins. Molecular characterization of these mutants has revealed a reciprocal posttranslational stabilization between the two proteins. Loss of either P140 or P110 yields a hemadsorption-negative phenotype and correlates with decreased or increased levels of cytoskeleton-related proteins MG386 and DnaK, respectively. Scanning electron microscopy analysis reveals the absolute requirement of P140 and P110 for the proper development of the attachment organelle. The phenotype described for these mutants resembles that of the spontaneous class I and class II cytadherence-negative mutants [G. R. Mernaugh, S. F. Dallo, S. C. Holt, and J. B. Baseman, Clin. Infect. Dis. 17(Suppl. 1):S69-S78, 1993], whose genetic basis remained undetermined until now. Complementation assays and sequencing analysis demonstrate that class I and class II mutants are the consequence of large deletions affecting the mg192 and mg191-mg192 genes, respectively. These deletions originated from single-recombination events involving sequences of the MgPa operon and the MgPa island located immediately downstream. We also demonstrate the translocation of MgPa sequences to a particular MgPa island by double-crossover events. Based on these observations, we propose that in addition to being a source of antigenic variation, MgPa islands could be also involved in a general phase variation mechanism switching on and off, in a reversible or irreversible way, the adhesion properties of M. genitalium.


Virus Research | 1996

Glycoprotein E of bovine herpesvirus type 1 is involved in virus transmission by direct cell-to-cell spread

Xavier Rebordosa; Jaume Piñol; Josep A. Pérez-Pons; Jorge Lloberas; Jordi Naval; Xavier Serra-Hartmann; Enric Espuna; Enrique Querol

In order to identify the role of the bovine herpesvirus type 1 (BHV-1) glycoprotein E (gE) in the viral infection cycle, we have constructed a BHV-1 gE deletion mutant strain (BHV-1 gE-). This strain was assayed in vitro by comparing its growth kinetics with the wild type strain used as a host of the deletion. Our results indicate that those conditions which prevent the infection by direct adsorption to the cells (presence of a semi-solid medium or presence of neutralizing antibodies in the medium) selectively inhibit the growth of the gE- strain, suggesting that gE plays a central role in the BHV-1 spread by direct cell-to-cell transmission, a major mechanism of the BHV-1 in vivo virulence.


Molecular Microbiology | 2010

Cell division in a minimal bacterium in the absence of ftsZ

Maria Lluch-Senar; Enrique Querol; Jaume Piñol

Mycoplasma genomes exhibit an impressively low amount of genes involved in cell division and some species even lack the ftsZ gene, which is found widespread in the microbial world and is considered essential for cell division by binary fission. We constructed a Mycoplasma genitalium ftsZ null mutant by gene replacement to investigate the role of this gene and the presence of alternative cell division mechanisms in this minimal bacterium. Our results demonstrate that ftsZ is non‐essential for cell growth and reveal that, in the absence of the FtsZ protein, M. genitalium can manage feasible cell divisions and cytokinesis using the force generated by its motile machinery. This is an alternative mechanism, completely independent of the FtsZ protein, to perform cell division by binary fission in a microorganism. We also propose that the mycoplasma cytoskeleton, a complex network of proteins involved in many aspects of the biology of these microorganisms, may have taken over the function of many genes involved in cell division, allowing their loss in the regressive evolution of the streamlined mycoplasma genomes.


Nucleic Acids Research | 2014

MultitaskProtDB: a database of multitasking proteins

Sergio Hernández; Gabriela Ferragut; Isaac Amela; JosepAntoni Perez-Pons; Jaume Piñol; Angel Mozo-Villarias; Juan Cedano; Enrique Querol

We have compiled MultitaskProtDB, available online at http://wallace.uab.es/multitask, to provide a repository where the many multitasking proteins found in the literature can be stored. Multitasking or moonlighting is the capability of some proteins to execute two or more biological functions. Usually, multitasking proteins are experimentally revealed by serendipity. This ability of proteins to perform multitasking functions helps us to understand one of the ways used by cells to perform many complex functions with a limited number of genes. Even so, the study of this phenomenon is complex because, among other things, there is no database of moonlighting proteins. The existence of such a tool facilitates the collection and dissemination of these important data. This work reports the database, MultitaskProtDB, which is designed as a friendly user web page containing >288 multitasking proteins with their NCBI and UniProt accession numbers, canonical and additional biological functions, monomeric/oligomeric states, PDB codes when available and bibliographic references. This database also serves to gain insight into some characteristics of multitasking proteins such as frequencies of the different pairs of functions, phylogenetic conservation and so forth.


PLOS Pathogens | 2011

A Trigger Enzyme in Mycoplasma pneumoniae: Impact of the Glycerophosphodiesterase GlpQ on Virulence and Gene Expression

Sebastian R. Schmidl; Andreas Otto; Maria Lluch-Senar; Jaume Piñol; Julia Busse; Dörte Becher; Jörg Stülke

Mycoplasma pneumoniae is a causative agent of atypical pneumonia. The formation of hydrogen peroxide, a product of glycerol metabolism, is essential for host cell cytotoxicity. Phosphatidylcholine is the major carbon source available on lung epithelia, and its utilization requires the cleavage of deacylated phospholipids to glycerol-3-phosphate and choline. M. pneumoniae possesses two potential glycerophosphodiesterases, MPN420 (GlpQ) and MPN566. In this work, the function of these proteins was analyzed by biochemical, genetic, and physiological studies. The results indicate that only GlpQ is an active glycerophosphodiesterase. MPN566 has no enzymatic activity as glycerophosphodiesterase and the inactivation of the gene did not result in any detectable phenotype. Inactivation of the glpQ gene resulted in reduced growth in medium with glucose as the carbon source, in loss of hydrogen peroxide production when phosphatidylcholine was present, and in a complete loss of cytotoxicity towards HeLa cells. All these phenotypes were reverted upon complementation of the mutant. Moreover, the glpQ mutant strain exhibited a reduced gliding velocity. A comparison of the proteomes of the wild type strain and the glpQ mutant revealed that this enzyme is also implicated in the control of gene expression. Several proteins were present in higher or lower amounts in the mutant. This apparent regulation by GlpQ is exerted at the level of transcription as determined by mRNA slot blot analyses. All genes subject to GlpQ-dependent control have a conserved potential cis-acting element upstream of the coding region. This element overlaps the promoter in the case of the genes that are repressed in a GlpQ-dependent manner and it is located upstream of the promoter for GlpQ-activated genes. We may suggest that GlpQ acts as a trigger enzyme that measures the availability of its product glycerol-3-phosphate and uses this information to differentially control gene expression.


Molecular Microbiology | 2006

Mycoplasma genitalium mg200 and mg386 genes are involved in gliding motility but not in cytadherence

Oscar Q. Pich; Raul Burgos; Mario Ferrer-Navarro; Enrique Querol; Jaume Piñol

Isolation and characterization of transposon‐generated Mycoplasma genitalium gliding‐deficient mutants has implicated mg200 and mg386 genes in gliding motility. The proposed role of these genes was confirmed by restoration of the gliding phenotype in deficient mutants through gene complementation with their respective mg386 or mg200 wild‐type copies. mg200 and mg386 are the first reported gliding‐associated mycoplasma genes not directly involved in cytadherence. Orthologues of MG200 and MG386 proteins are also found in the slow gliding mycoplasmas, Mycoplasma pneumoniae and Mycoplasma gallisepticum, suggesting the existence of a unique set of proteins involved in slow gliding motility. MG200 and MG386 proteins share common features, such as the presence of enriched in aromatic and glycine residues boxes and an acidic and proline‐rich domain, suggesting that these motifs could play a significant role in gliding motility.


Molecular Microbiology | 2008

Deletion of the Mycoplasma genitalium MG_217 gene modifies cell gliding behaviour by altering terminal organelle curvature

Raul Burgos; Oscar Q. Pich; Enrique Querol; Jaume Piñol

Motility is often a virulence factor of pathogenic bacteria. Although recent works have identified genes involved in gliding motility of mycoplasmas, little is known about the mechanisms governing the cell gliding behaviour. Here, we report that Mycoplasma genitalium MG217 is a novel protein involved in the gliding apparatus of this organism and it is, at least, one of the genes that are directing cells to move in narrow circles when they glide. In the absence of MG_217 gene, cells are still able to glide but they mainly move drawing erratic or wide circular paths. This change in the gliding behaviour correlates with a rearrangement in the terminal organelle disposition, suggesting that the terminal organelle operates as a guide to steer the mycoplasma cell in a specific direction. Immunogold labelling reveals that MG217 protein is located intracellular at the distal end of the terminal organelle, between the cell membrane and the terminal button. Such location is consistent with the idea that MG217 could act as a modulator of the terminal organelle curvature, allowing cells to move in specific directions.


Microbiology | 2008

Role of Mycoplasma genitalium MG218 and MG317 cytoskeletal proteins in terminal organelle organization, gliding motility and cytadherence

Oscar Q. Pich; Raul Burgos; Mario Ferrer-Navarro; Enrique Querol; Jaume Piñol

The terminal organelle is a differentiated structure that plays a key role in mycoplasma cytadherence and locomotion. For this reason, the analysis of Mycoplasma genitalium mutants displaying anomalous terminal organelles could improve our knowledge regarding the structural elements required for proper locomotion. In this study, we isolated several M. genitalium mutants having transposon insertions within the mg218 or mg317 genes, which encode the orthologues of Mycoplasma pneumoniae HMW2 and HMW3 cytoskeletal proteins, respectively. As expected, mg218(-) and mg317(-) mutants exhibit a reduced gliding motility, although their ability to attach to solid surfaces was not completely abolished. Interestingly, most of the mg218(-) mutants expressed N-terminal MG218 derivatives and showed the presence of short terminal organelles retaining many of the functions displayed by this structure in the wild-type strain, suggesting that the N-terminal region of this protein is an essential element in the architecture of the terminal organelle. Separately, the analysis of mg317(-) mutants indicates that MG317 protein is involved in the formation of the terminal button and contributes to anchoring the electron-dense core to the cell membrane. The results presented here clearly show that MG218 and MG317 proteins are implicated in the maintenance of gliding motility and cytadherence in M. genitalium.


Journal of Bacteriology | 2007

Functional Analysis of the Mycoplasma genitalium MG312 Protein Reveals a Specific Requirement of the MG312 N-Terminal Domain for Gliding Motility

Raul Burgos; Oscar Q. Pich; Enrique Querol; Jaume Piñol

The human pathogen Mycoplasma genitalium is known to mediate cell adhesion to target cells by the attachment organelle, a complex structure also implicated in gliding motility. The gliding mechanism of M. genitalium cells is completely unknown, but recent studies have begun to elucidate the components of the gliding machinery. We report the study of MG312, a cytadherence-related protein containing in the N terminus a box enriched in aromatic and glycine residues (EAGR), which is also exclusively found in MG200 and MG386 gliding motility proteins. Characterization of an MG_312 deletion mutant obtained by homologous recombination has revealed that the MG312 protein is required for the assembly of the M. genitalium terminal organelle. This finding is consistent with the intermediate-cytadherence phenotype and the complete absence of gliding motility exhibited by this mutant. Reintroduction of several MG_312 deletion derivatives into the MG_312 null mutant allowed us to identify two separate functional domains: an N-terminal domain implicated in gliding motility and a C-terminal domain involved in cytadherence and terminal organelle assembly functions. In addition, our results also provide evidence that the EAGR box has a specific contribution to mycoplasma cell motion. Finally, the presence of a conserved ATP binding site known as a Walker A box in the MG312 N-terminal region suggests that this structural protein could also play an active function in the gliding mechanism.


Gene | 1994

Mapping, cloning and sequencing of a glycoprotein-encoding gene from bovine herpesvirus type 1 homologous to the gE gene from HSV-1

Xavier Rebordosa; Jaume Piñol; Josep A. Pérez-Pons; Jorge Lloberas; Jordi Naval; Enrique Querol

In order to map and identify the glycoprotein-encoding gene from bovine herpesvirus type 1 (BHV-1), homologous to the gE glycoprotein from herpes simplex virus type 1 (HSV-1), a region of the unique short sequence from the BHV-1 genome has been sequenced. The sequenced region contains an ORF coding for a polypeptide of 575 amino acids (aa). The aa sequence presents substantial similarity to that of the glycoprotein gE from HSV-1 and to homologous proteins of related viruses such as pseudorabies virus, equine herpesvirus type 1 and varicella zoster virus. The aa sequence presents additional characteristics compatible with the structure of a viral glycoprotein: signal peptide, putative glycosylation sites and a long C-terminal transmembrane alpha-helix.

Collaboration


Dive into the Jaume Piñol's collaboration.

Top Co-Authors

Avatar

Enrique Querol

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Oscar Q. Pich

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Juan Cedano

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Ignacio Fita

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Josep A. Pérez-Pons

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Isaac Amela

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Antonio Gómez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Luis González-González

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Mario Ferrer-Navarro

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Raul Burgos

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge