Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javed Mohammed is active.

Publication


Featured researches published by Javed Mohammed.


Immunity | 2015

Candida albicans Morphology and Dendritic Cell Subsets Determine T Helper Cell Differentiation

Sakeen W. Kashem; Botond Z. Igyártó; Maryam Gerami-Nejad; Yosuke Kumamoto; Javed Mohammed; Elizabeth S. Jarrett; Rebecca A. Drummond; Sandra Zurawski; Gerard Zurawski; Judith Berman; Akiko Iwasaki; Gordon D. Brown; Daniel H. Kaplan

Candida albicans is a dimorphic fungus responsible for chronic mucocutaneous and systemic infections. Mucocutaneous immunity to C. albicans requires T helper 17 (Th17) cell differentiation that is thought to depend on recognition of filamentous C. albicans. Systemic immunity is considered T cell independent. Using a murine skin infection model, we compared T helper cell responses to yeast and filamentous C. albicans. We found that only yeast induced Th17 cell responses through a mechanism that required Dectin-1-mediated expression of interleukin-6 (IL-6) by Langerhans cells. Filamentous forms induced Th1 without Th17 cell responses due to the absence of Dectin-1 ligation. Notably, Th17 cell responses provided protection against cutaneous infection while Th1 cell responses provided protection against systemic infection. Thus, C. albicans morphology drives distinct T helper cell responses that provide tissue-specific protection. These findings provide insight into compartmentalization of Th cell responses and C. albicans pathogenesis and have critical implications for vaccine strategies.


Nature Immunology | 2016

Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β.

Javed Mohammed; Lalit K. Beura; Aleh Bobr; Brian Astry; Brian Chicoine; Sakeen W. Kashem; Nathan E. Welty; Botond Z. Igyártó; Sathi Wijeyesinghe; Emily A. Thompson; Catherine Matte; Laurent Bartholin; Alesia Kaplan; Dean Sheppard; Alina G Bridges; Warren D. Shlomchik; David Masopust; Daniel H. Kaplan

Cells of the immune system that reside in barrier epithelia provide a first line of defense against pathogens. Langerhans cells (LCs) and CD8+ tissue-resident memory T cells (TRM cells) require active transforming growth factor-β1 (TGF-β) for epidermal residence. Here we found that integrins αvβ6 and αvβ8 were expressed in non-overlapping patterns by keratinocytes (KCs) and maintained the epidermal residence of LCs and TRM cells by activating latent TGF-β. Similarly, the residence of dendritic cells and TRM cells in the small intestine epithelium also required αvβ6. Treatment of the skin with ultraviolet irradiation decreased integrin expression on KCs and reduced the availability of active TGF-β, which resulted in LC migration. Our data demonstrated that regulated activation of TGF-β by stromal cells was able to directly control epithelial residence of cells of the immune system through a novel mechanism of intercellular communication.


Journal of Investigative Dermatology | 2013

CD8+ T Cells Mediate RAS-Induced Psoriasis-Like Skin Inflammation through IFN-γ

Andrew J. Gunderson; Javed Mohammed; Frank J. Horvath; Michael A. Podolsky; Cherie R. Anderson; Adam B. Glick

The RAS signaling pathway is constitutively activated in psoriatic keratinocytes. We expressed activated H-RASV12G in suprabasal keratinocytes of adult mice and observed rapid development of a psoriasis-like skin phenotype characterized by basal keratinocyte hyperproliferation, acanthosis, hyperkeratosis, intraepidermal neutrophil microabscesses and increased Th1/Th17 and Tc1/Tc17 skin infiltration. The majority of skin infiltrating CD8+ T cells co-expressed IFN-γ and IL-17A. When RAS was expressed on a Rag1−/− background, microabscess formation, iNOS expression and keratinocyte hyperproliferation were suppressed. Depletion of CD8+ but not CD4+ T cells reduced cutaneous and systemic inflammation, the RAS-induced increase in cutaneous Th17 and IL-17+ γΔ T cells, and epidermal hyperproliferation to levels similar to a Rag1−/− background. Reconstitution of Rag1−/− inducible RAS mice with purified CD8+ T cells restored microabscess formation and epidermal hyperproliferation. Neutralization of IFN-γ but not IL-17A in CD8+ T cell reconstituted Rag1−/− mice expressing RAS blocked CD8-mediated skin inflammation, iNOS expression and keratinocyte hyperproliferation. These results show for that CD8+ T cells can orchestrate skin inflammation with psoriasis-like pathology in response to constitutive RAS activation in keratinocytes, and this is primarily mediated through IFN-γ.


Nature Immunology | 2018

Intravital mucosal imaging of CD8 + resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory

Lalit K. Beura; Jason S. Mitchell; Emily A. Thompson; Jason M. Schenkel; Javed Mohammed; Sathi Wijeyesinghe; Raissa Fonseca; Brandon J. Burbach; Heather D. Hickman; Vaiva Vezys; Brian T. Fife; David Masopust

CD8+ T cell immunosurveillance dynamics influence the outcome of intracellular infections and cancer. Here we used two-photon intravital microscopy to visualize the responses of CD8+ resident memory T cells (TRM cells) within the reproductive tracts of live female mice. We found that mucosal TRM cells were highly motile, but paused and underwent in situ division after local antigen challenge. TRM cell reactivation triggered the recruitment of recirculating memory T cells that underwent antigen-independent TRM cell differentiation in situ. However, the proliferation of pre-existing TRM cells dominated the local mucosal recall response and contributed most substantially to the boosted secondary TRM cell population. We observed similar results in skin. Thus, TRM cells can autonomously regulate the expansion of local immunosurveillance independently of central memory or proliferation in lymphoid tissue.Masopust and colleagues show that mucosal tissue-resident memory T cells proliferate in situ in response to local antigen and dominate the local recall response.


Journal of Investigative Dermatology | 2010

TGFβ1-Induced Inflammation in Premalignant Epidermal Squamous Lesions Requires IL-17

Javed Mohammed; Andrew Ryscavage; Rolando Perez-Lorenzo; Andrew J. Gunderson; Nicholas Blazanin; Adam B. Glick

Overexpression of transforming growth factor-beta1 (TGFbeta1) in the normal epidermis can provoke an inflammatory response, but whether this occurs within a developing tumor is not clear. To test this, we used an inducible transgenic mouse to overexpress TGFbeta1 in premalignant squamous lesions. Within 48 hours of TGFbeta1 induction, there was an increase in IL-17 production by both CD4(+) and gammadelta(+) T cells, together with increased expression of T-helper-17 (Th17)-polarizing cytokines. Induction of TGFbeta1 in premalignant primary keratinocytes elevated the expression of proinflammatory and Th17-polarizing cytokines, and the keratinocyte-conditioned media caused IL-17 production by naive T cells that was dependent on T-cell TGFbeta1 signaling. Microarray analysis showed significant upregulation of proinflammatory genes 2 days after TGFbeta1 induction, and this was followed by increased MPO(+), F4/80(+), and CD8(+) cells in tumors, increased CD8(+) effectors and IFNgamma(+) cells in skin-draining LNs, and tumor regression. In parallel, the percentage of tumor CD11b(+)Ly6G(+) neutrophils was reduced. Neutralization of IL-17 blocked TGFbeta1-induced CD11b(+) Ly6G(-) tumor infiltration but did not alter the reduction of neutrophils or tumor regression. Thus, TGFbeta1 overexpression causes IL-17-dependent and IL-17-independent changes in the premalignant tumor inflammatory microenvironment.


Journal of Investigative Dermatology | 2013

TGFβ1 Overexpression by Keratinocytes Alters Skin Dendritic Cell Homeostasis and Enhances Contact Hypersensitivity

Javed Mohammed; Andrew J. Gunderson; Hong Hanh Khong; Richard D. Koubek; Mark C. Udey; Adam B. Glick

Overexpression of Transforming Growth Factor Beta1 (TGFβ1) in mouse epidermis causes cutaneous inflammation and keratinocyte hyperproliferation. Here, we examined acute effects of TGFβ1 overproduction by keratinocytes on skin dendritic cells (DCs). TGFβ1 induction for 2 and 4 days increased numbers and CD86 expression of B220+ plasmacytoid DCs (pDCs) and CD207+CD103+, CD207−CD103−CD11b+ and CD207−CD103−CD11b− dermal DCs (dDCs) in skin draining lymph nodes (SDLN). The dermis of TGFβ1-overexpressing mice had significantly more pDCs, CD207+CD103+ dDCs and CD207-CD11b+ dDCs in the absence of increased dermal proliferation. Application of dye, TRITC, in dibutylpthalate (DBP) solution after TGFβ1 induction increased the numbers of TRITC+CD207− dDCs in SDLN, and augmented TRITC/DBP-induced Langerhans cell (LC) migration 72 hrs post-TRITC treatment. Consistent with this, LC migration was increased in vitro by TGFβ1 overexpression in skin explants and by exogenous TGFβ1 in culture media. Transient TGFβ1 induction during DNFB sensitization increased contact hypersensitivity responses by 1.5-fold. Thus, elevated epidermal TGFβ1 alone is sufficient to alter homeostasis of multiple cutaneous DC subsets and enhance DC migration and immune responses to contact sensitizers. These results highlight a role for keratinocyte-derived TGFβ1 in DC trafficking and the initiation of skin inflammation.


Carcinogenesis | 2014

Tumor-promoting role of TGFβ1 signaling in ultraviolet B-induced skin carcinogenesis is associated with cutaneous inflammation and lymph node migration of dermal dendritic cells

Anand Ravindran; Javed Mohammed; Andrew J. Gunderson; Xiao Cui; Adam B. Glick

Transforming growth factor beta 1 (TGFβ1) is a pleiotropic cytokine in the skin that can function both as a tumor promoter and suppressor in chemically induced skin carcinogenesis, but the function in ultraviolet B (UVB) carcinogenesis is not well understood. Treatment of SKH1 hairless mice with the activin-like kinase 5 (ALK5) inhibitor SB431542 to block UVB-induced activation of cutaneous TGFβ1 signaling suppressed skin tumor formation but did not alter tumor size or tumor cell proliferation. Tumors that arose in SB-treated mice after 30 weeks had significantly reduced percentage of IFNγ(+) tumor-infiltrating lymphocytes compared with control mice. SB431542 blocked acute and chronic UVB-induced skin inflammation and T-cell activation in the skin-draining lymph node (SDLN) and skin but did not alter UVB-induced epidermal proliferation. We tested the effect of SB431542 on migration of skin dendritic cell (DC) populations because DCs are critical mediators of T-cell activation and cutaneous inflammation. SB431542 blocked (i) UVB-induced Smad2 phosphorylation in dermal DC (dDC) and (ii) SDLN and ear explant migration of CD103(+) CD207(+) and CD207(-) skin DC subsets but did not affect basal or UV-induced migration of Langerhans cells. Mice expressing a dominant-negative TGFβ type II receptor in CD11c(+) cells had reduced basal and UVB-induced SDLN migration of CD103(+) CD207(+) and CD207(-) DC subsets and a reduced percentage of CD86(high) dDC following UVB irradiation. Together, these suggest that TGFβ1 signaling has a tumor-promoting role in UVB-induced skin carcinogenesis and this is mediated in part through its role in UVB-induced migration of dDC and cutaneous inflammation.


Carcinogenesis | 2007

Context-dependent regulation of cutaneous immunological responses by TGFβ1 and its role in skin carcinogenesis

Adam B. Glick; Rolando Perez-Lorenzo; Javed Mohammed


Journal of Investigative Dermatology | 2017

069 Expression of αvβ8 by Langerhans cells is required for Th17 differentiation and tethering of LC in the epidermis

Sakeen W. Kashem; Javed Mohammed; David L. Kaplan


Journal of Immunology | 2015

Candida albicans morphology and DC subsets determines T helper differentiation (MUC2P.920)

Botond Z. Igyártó; Sakeen W. Kashem; Maryam Gerami-Nejad; Yosuke Kumamoto; Javed Mohammed; Elizabeth S. Jarrett; Rebecca A. Drummond; Sandra Zurawski; Gerard Zurawski; Judith Berman; Akiko Iwasaki; Gordon D. Brown; Daniel H. Kaplan

Collaboration


Dive into the Javed Mohammed's collaboration.

Top Co-Authors

Avatar

Adam B. Glick

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rolando Perez-Lorenzo

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anand Ravindran

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Andrew Ryscavage

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge