Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javid Moslehi is active.

Publication


Featured researches published by Javid Moslehi.


Nature | 2011

Telomere dysfunction induces metabolic and mitochondrial compromise

Ergiin Sahin; Simona Colla; Marc Liesa; Javid Moslehi; Florian Muller; Mira Guo; Marcus P. Cooper; Darrell N. Kotton; Attila J. Fabian; Carl Walkey; Richard S. Maser; Giovanni Tonon; Friedrich Foerster; Robert Xiong; Y. Alan Wang; Sachet A. Shukla; Mariela Jaskelioff; Eric Martin; Timothy P. Heffernan; Alexei Protopopov; Elena Ivanova; John E. Mahoney; Maria Kost-Alimova; Samuel R. Perry; Roderick T. Bronson; Ronglih Liao; Richard C. Mulligan; Orian S. Shirihai; Lynda Chin; Ronald A. DePinho

Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1β, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1β promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere–p53–PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.


Cell | 2013

Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging

Ana P. Gomes; Nathan L. Price; Alvin J.Y. Ling; Javid Moslehi; Magdalene K. Montgomery; Luis Rajman; James P. White; João S. Teodoro; Christiane D. Wrann; Basil P. Hubbard; Evi M. Mercken; Carlos M. Palmeira; Rafael de Cabo; Anabela P. Rolo; Nigel Turner; Eric L. Bell; David A. Sinclair

Ever since eukaryotes subsumed the bacterial ancestor of mitochondria, the nuclear and mitochondrial genomes have had to closely coordinate their activities, as each encode different subunits of the oxidative phosphorylation (OXPHOS) system. Mitochondrial dysfunction is a hallmark of aging, but its causes are debated. We show that, during aging, there is a specific loss of mitochondrial, but not nuclear, encoded OXPHOS subunits. We trace the cause to an alternate PGC-1α/β-independent pathway of nuclear-mitochondrial communication that is induced by a decline in nuclear NAD(+) and the accumulation of HIF-1α under normoxic conditions, with parallels to Warburg reprogramming. Deleting SIRT1 accelerates this process, whereas raising NAD(+) levels in old mice restores mitochondrial function to that of a young mouse in a SIRT1-dependent manner. Thus, a pseudohypoxic state that disrupts PGC-1α/β-independent nuclear-mitochondrial communication contributes to the decline in mitochondrial function with age, a process that is apparently reversible.


Journal of Clinical Investigation | 1997

Roles of interferon-gamma and interleukin-4 in murine lupus.

Stanford L. Peng; Javid Moslehi; Joe Craft

The systemic autoimmune syndrome of MRL/Mp-lpr/lpr (MRL/lpr) mice consists of severe pan-isotype hypergammaglobulinemia, autoantibody production, lymphadenopathy, and immune complex-associated end-organ disease. Its pathogenesis has been largely attributed to helper alphabeta T cells that may require critical cytokines to propagate pathogenic autoantibody production. To investigate the roles of prototypical Th1 and Th2 cytokines in the pathogenesis of murine lupus, IFN-gamma -/- and IL-4 -/- lupus-prone mice were generated by backcrossing cytokine knockout animals against MRL/lpr breeders. IFN-gamma -/- animals produced significantly reduced titers of IgG2a and IgG2b serum immunoglobulins as well as autoantibodies, but maintained comparable levels of IgG1 and IgE in comparison to cytokine-intact controls; in contrast, IL-4 -/- animals produced significantly less IgG1 and IgE serum immunoglobulins, but maintained comparable levels of IgG2a and IgG2b as well as autoantibodies in comparison to controls. Both IFN-gamma -/- and IL-4 -/- mice, however, developed significantly reduced lymphadenopathy and end-organ disease. These results suggest that IFN-gamma and IL-4 play opposing but dispensable roles in the development of lupus-associated hypergammaglobulinemia and autoantibody production; however, they both play prominent roles in the pathogenesis of murine lupus-associated tissue injury, as well as in lpr-induced lymphadenopathy.


Circulation Research | 2004

cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism.

Eiki Takimoto; Hunter C. Champion; Diego Belardi; Javid Moslehi; Marco Mongillo; Evanthia Mergia; David C. Montrose; Takayoshi Isoda; Kate Aufiero; Manuela Zaccolo; Wolfgang R. Dostmann; Carolyn J. Smith; David A. Kass

β-Adrenergic agonists stimulate cardiac contractility and simultaneously blunt this response by coactivating NO synthase (NOS3) to enhance cGMP synthesis and activate protein kinase G (PKG-1). cGMP is also catabolically regulated by phosphodiesterase 5A (PDE5A). PDE5A inhibition by sildenafil (Viagra) increases cGMP and is used widely to treat erectile dysfunction; however, its role in the heart and its interaction with β-adrenergic and NOS3/cGMP stimulation is largely unknown. In nontransgenic (control) murine in vivo hearts and isolated myocytes, PDE5A inhibition (sildenafil) minimally altered rest function. However, when the hearts or isolated myocytes were stimulated with isoproterenol, PDE5A inhibition was associated with a suppression of contractility that was coupled to elevated cGMP and increased PKG-1 activity. In contrast, NOS3-null hearts or controls with NOS inhibited by NG-nitro-l-arginine methyl ester, or soluble guanylate cyclase (sGC) inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one, showed no effect of PDE5A inhibition on β-stimulated contractility or PKG-1 activation. This lack of response was not attributable to altered PDE5A gene or protein expression or in vitro PDE5A activity, but rather to an absence of sGC-generated cGMP specifically targeted to PDE5A catabolism and to a loss of PDE5A localization to z-bands. Re-expression of active NOS3 in NOS3-null hearts by adenoviral gene transfer restored PDE5A z-band localization and the antiadrenergic efficacy of PDE5A inhibition. These data support a novel regulatory role of PDE5A in hearts under adrenergic stimulation and highlight specific coupling of PDE5A catabolic regulation with NOS3-derived cGMP attributable to protein subcellular localization and targeted synthetic/catabolic coupling.


EMBO Reports | 2002

An intact NEDD8 pathway is required for Cullin‐dependent ubiquitylation in mammalian cells

Michael Ohh; William Y. Kim; Javid Moslehi; Yuzhi Chen; Vincent Chau; Margaret A Read; William G. Kaelin

Skp1‐Cdc53/Cul1‐F‐box (SCF) complexes constitute a class of E3 ubiquitin ligases. Recently, a multiprotein complex containing pVHL, elongin C and Cul2 (VEC) was shown to structurally and functionally resemble SCF complexes. Cdc53 and the Cullins can become covalently linked to the ubiquitin‐like molecule Rub1/NEDD8. Inhibition of neddylation inhibits SCF function in vitro and in yeast and plants. Here we show that ongoing neddylation is likewise required for VEC function in vitro and for the degradation of SCF and VEC targets in mammalian cells. Thus, neddylation regulates the activity of two specific subclasses of mammalian ubiquitin ligases.


Journal of Clinical Oncology | 2011

Incidence and risk of congestive heart failure in patients with renal and nonrenal cell carcinoma treated with sunitinib.

Christopher J. Richards; Youjin Je; Fabio A.B. Schutz; Daniel Y.C. Heng; Susan M. Dallabrida; Javid Moslehi; Toni K. Choueiri

PURPOSE Sunitinib is a multitargeted receptor tyrosine kinase inhibitor approved for treatment of renal cell carcinoma (RCC) and GI stromal tumor. Congestive heart failure (CHF) is an important adverse effect that has been reported with sunitinib, but overall incidence and relative risk (RR) remain undefined. We performed an up-to-date meta-analysis to determine the risk of developing CHF in patients with both RCC and non-RCC tumors treated with sunitinib. METHODS Medline databases were searched for articles published between January 1966 and February 2011. Eligible studies were limited to phase II and III trials of sunitinib with adequate safety reporting in patients with cancer of any tumor type. Summary incidence, RR, and 95% CIs were calculated using random- or fixed-effects models based on the heterogeneity of included studies. RESULTS A total of 6,935 patients were included. Overall incidence for all- and high-grade CHF in sunitinib-treated patients was 4.1% (95% CI, 1.5% to 10.6%) and 1.5% (95% CI, 0.8% to 3.0%), respectively. RR of all- and high-grade CHF in sunitinib-treated patients compared with placebo-treated patients was 1.81 (95% CI, 1.30 to 2.50; P < .001) and 3.30 (95% CI, 1.29 to 8.45; P = .01), respectively. On subgroup analysis, there was no difference observed in CHF incidence for patients with RCC versus non-RCC or in trials with or without cardiac monitoring. No evidence of publication bias was observed. CONCLUSION Sunitinib use is associated with increased risk of CHF in patients with cancer.


Molecular and Cellular Biology | 2009

A Feedback Loop Involving the Phd3 Prolyl Hydroxylase Tunes the Mammalian Hypoxic Response In Vivo

Yoji Andrew Minamishima; Javid Moslehi; Robert F. Padera; Roderick T. Bronson; Ronglih Liao; William G. Kaelin

ABSTRACT Hypoxia-inducible factor (HIF), consisting of a labile α subunit and a stable β subunit, is a master regulator of hypoxia-responsive mRNAs. HIFα undergoes oxygen-dependent prolyl hydroxylation, which marks it for polyubiquitination by a complex containing the von Hippel-Lindau protein (pVHL). Among the three Phd family members, Phd2 appears to be the primary HIF prolyl hydroxylase. Phd3 is induced by HIF and, based on findings from in vitro studies, may participate in a HIF-regulatory feedback loop. Here, we report that Phd3 loss exacerbates the HIF activation, hepatic steatosis, dilated cardiomyopathy, and premature mortality observed in mice lacking Phd2 alone and produces a closer phenocopy of the changes seen in mice lacking pVHL than the loss of Phd2 alone. Importantly, the degree to which Phd3 can compensate for Phd2 loss and the degree to which the combined loss of Phd2 and Phd3 resembles pVHL loss appear to differ for different HIF-responsive genes and in different tissues. These findings highlight that the responses of different HIF target genes to changes in prolyl hydroxylase activity differ, quantitatively and qualitatively, in vivo and have implications for the development of paralog-specific prolyl hydroxylase inhibitors as therapeutic agents.


Journal of Clinical Oncology | 2015

Tyrosine Kinase Inhibitor–Associated Cardiovascular Toxicity in Chronic Myeloid Leukemia

Javid Moslehi; Michael W. Deininger

For most patients with chronic myeloid leukemia, tyrosine kinase inhibitors (TKIs) have turned a fatal disease into a manageable chronic condition. Imatinib, the first BCR-ABL1 TKI granted regulatory approval, has been surpassed in terms of molecular responses by the second-generation TKIs nilotinib, dasatinib, and bosutinib. Recently, ponatinib was approved as the only TKI with activity against the T315I mutation. Although all TKIs are associated with nonhematologic adverse events (AEs), experience with imatinib suggested that toxicities are typically manageable and apparent early during drug development. Recent reports of cardiovascular AEs with nilotinib and particularly ponatinib and of pulmonary arterial hypertension with dasatinib have raised concerns about long-term sequelae of drugs that may be administered for decades. Here, we review what is currently known about the cardiovascular toxicities of BCR-ABL1 TKIs, discuss potential mechanisms underlying cardiovascular AEs, and elucidate discrepancies between the reporting of such AEs between oncology and cardiovascular trials. Whenever possible, we provide practical recommendations, but we concede that cause-directed interventions will require better mechanistic understanding. We suggest that chronic myeloid leukemia heralds a fundamental shift in oncology toward effective but mostly noncurative long-term therapies. Realizing the full potential of these treatments will require a proactive rational approach to minimize long-term cardiovascular and cardiometabolic toxicities.


Circulation Research | 2013

MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling

Basak Icli; Akm Khyrul Wara; Javid Moslehi; Xinghui Sun; Eva Plovie; Meghan Cahill; Julio F. Marchini; Andrew Schissler; Robert F. Padera; Jianru Shi; Hui-Wen Cheng; Srilatha Raghuram; Zoltan Arany; Ronglih Liao; Kevin Croce; Calum A. MacRae; Mark W. Feinberg

Rationale: The rapid induction and orchestration of new blood vessels are critical for tissue repair in response to injury, such as myocardial infarction, and for physiological angiogenic responses, such as embryonic development and exercise. Objective: We aimed to identify and characterize microRNAs (miR) that regulate pathological and physiological angiogenesis. Methods and Results: We show that miR-26a regulates pathological and physiological angiogenesis by targeting endothelial cell (EC) bone morphogenic protein/SMAD1 signaling in vitro and in vivo. MiR-26a expression is increased in a model of acute myocardial infarction in mice and in human subjects with acute coronary syndromes. Ectopic expression of miR-26a markedly induced EC cycle arrest and inhibited EC migration, sprouting angiogenesis, and network tube formation in matrigel, whereas blockade of miR-26a had the opposite effects. Mechanistic studies demonstrate that miR-26a inhibits the bone morphogenic protein/SMAD1 signaling pathway in ECs by binding to the SMAD1 3′-untranslated region, an effect that decreased expression of Id1 and increased p21WAF/CIP and p27. In zebrafish, miR-26a overexpression inhibited formation of the caudal vein plexus, a bone morphogenic protein-responsive process, an effect rescued by ectopic SMAD1 expression. In mice, miR-26a overexpression inhibited EC SMAD1 expression and exercise-induced angiogenesis. Furthermore, systemic intravenous administration of an miR-26a inhibitor, locked nucleic acid-anti–miR-26a, increased SMAD1 expression and rapidly induced robust angiogenesis within 2 days, an effect associated with reduced myocardial infarct size and improved heart function. Conclusions: These findings establish miR-26a as a regulator of bone morphogenic protein/SMAD1-mediated EC angiogenic responses, and that manipulating miR-26a expression could provide a new target for rapid angiogenic therapy in ischemic disease states.


Journal of Clinical Oncology | 2017

Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline

Saro H. Armenian; Christina Lacchetti; Ana Barac; Joseph R. Carver; Louis S. Constine; Neelima Denduluri; Susan Dent; Pamela S. Douglas; Jean Bernard Durand; Michael S. Ewer; Carol J. Fabian; Melissa M. Hudson; Mariell Jessup; Lee W. Jones; Bonnie Ky; Erica L. Mayer; Javid Moslehi; Kevin C. Oeffinger; Katharine Ray; Kathryn J. Ruddy; Daniel J. Lenihan

Purpose Cardiac dysfunction is a serious adverse effect of certain cancer-directed therapies that can interfere with the efficacy of treatment, decrease quality of life, or impact the actual survival of the patient with cancer. The purpose of this effort was to develop recommendations for prevention and monitoring of cardiac dysfunction in survivors of adult-onset cancers. Methods Recommendations were developed by an expert panel with multidisciplinary representation using a systematic review (1996 to 2016) of meta-analyses, randomized clinical trials, observational studies, and clinical experience. Study quality was assessed using established methods, per study design. The guideline recommendations were crafted in part using the Guidelines Into Decision Support methodology. Results A total of 104 studies met eligibility criteria and compose the evidentiary basis for the recommendations. The strength of the recommendations in these guidelines is based on the quality, amount, and consistency of the evidence and the balance between benefits and harms. Recommendations It is important for health care providers to initiate the discussion regarding the potential for cardiac dysfunction in individuals in whom the risk is sufficiently high before beginning therapy. Certain higher risk populations of survivors of cancer may benefit from prevention and screening strategies implemented during cancer-directed therapies. Clinical suspicion for cardiac disease should be high and threshold for cardiac evaluation should be low in any survivor who has received potentially cardiotoxic therapy. For certain higher risk survivors of cancer, routine surveillance with cardiac imaging may be warranted after completion of cancer-directed therapy, so that appropriate interventions can be initiated to halt or even reverse the progression of cardiac dysfunction.

Collaboration


Dive into the Javid Moslehi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee W. Jones

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Douglas B. Johnson

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

John D. Groarke

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Allison King

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen L. Syrjala

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge