Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javier A. Carrero is active.

Publication


Featured researches published by Javier A. Carrero.


Nature | 2008

A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells

Ken Cadwell; John Y. Liu; Sarah L. Brown; Hiroyuki Miyoshi; Joy Loh; Jochen K. Lennerz; Chieko Kishi; Wumesh Kc; Javier A. Carrero; Steven R. Hunt; Christian D. Stone; Elizabeth M. Brunt; Ramnik J. Xavier; Barry P. Sleckman; Ellen Li; Noboru Mizushima; Thaddeus S. Stappenbeck; Herbert W. Virgin

Susceptibility to Crohn’s disease, a complex inflammatory disease involving the small intestine, is controlled by over 30 loci. One Crohn’s disease risk allele is in ATG16L1, a gene homologous to the essential yeast autophagy gene ATG16 (ref. 2). It is not known how ATG16L1 or autophagy contributes to intestinal biology or Crohn’s disease pathogenesis. To address these questions, we generated and characterized mice that are hypomorphic for ATG16L1 protein expression, and validated conclusions on the basis of studies in these mice by analysing intestinal tissues that we collected from Crohn’s disease patients carrying the Crohn’s disease risk allele of ATG16L1. Here we show that ATG16L1 is a bona fide autophagy protein. Within the ileal epithelium, both ATG16L1 and a second essential autophagy protein ATG5 are selectively important for the biology of the Paneth cell, a specialized epithelial cell that functions in part by secretion of granule contents containing antimicrobial peptides and other proteins that alter the intestinal environment. ATG16L1- and ATG5-deficient Paneth cells exhibited notable abnormalities in the granule exocytosis pathway. In addition, transcriptional analysis revealed an unexpected gain of function specific to ATG16L1-deficient Paneth cells including increased expression of genes involved in peroxisome proliferator-activated receptor (PPAR) signalling and lipid metabolism, of acute phase reactants and of two adipocytokines, leptin and adiponectin, known to directly influence intestinal injury responses. Importantly, Crohn’s disease patients homozygous for the ATG16L1 Crohn’s disease risk allele displayed Paneth cell granule abnormalities similar to those observed in autophagy-protein-deficient mice and expressed increased levels of leptin protein. Thus, ATG16L1, and probably the process of autophagy, have a role within the intestinal epithelium of mice and Crohn’s disease patients by selective effects on the cell biology and specialized regulatory properties of Paneth cells.


Immunity | 2014

Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation

Slava Epelman; Kory J. Lavine; Anna E. Beaudin; Dorothy K. Sojka; Javier A. Carrero; Boris Calderon; Thaddeus Brija; Emmanuel L. Gautier; Stoyan Ivanov; Ansuman T. Satpathy; Joel D. Schilling; Reto A. Schwendener; Ismail Sergin; Babak Razani; E. Camilla Forsberg; Wayne M. Yokoyama; Emil R. Unanue; Marco Colonna; Gwendalyn J. Randolph; Douglas L. Mann

Cardiac macrophages are crucial for tissue repair after cardiac injury but are not well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6c(hi) monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins, and strategies to regulate compartment size.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Cytokine-induced memory-like natural killer cells

Megan A. Cooper; Julie M. Elliott; Peter A. Keyel; Liping Yang; Javier A. Carrero; Wayne M. Yokoyama

The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN-γ) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into naïve hosts can be specifically detected 7–22 days later when they are phenotypically similar to naïve cells and are not constitutively producing IFN-γ. However, they produce significantly more IFN-γ when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to naïve NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-specific adaptive immune cells.


Journal of Experimental Medicine | 2006

Lymphocytes are detrimental during the early innate immune response against Listeria monocytogenes

Javier A. Carrero; Boris Calderon; Emil R. Unanue

Mice deficient in lymphocytes are more resistant than normal mice to Listeria monocytogenes infection during the early innate immune response. This paradox remains unresolved: lymphocytes are required for sterilizing immunity, but their presence during the early stage of the infection is not an asset and may even be detrimental. We found that lymphocyte-deficient mice, which showed limited apoptosis in infected organs, were resistant during the first four days of infection but became susceptible when engrafted with lymphocytes. Engraftment with lymphocytes from type I interferon receptor–deficient (IFN-αβR−/−) mice, which had reduced apoptosis, did not confer increased susceptibility to infection, even when the phagocytes were IFN-αβR+/+. The attenuation of innate immunity was due, in part, to the production of the antiinflammatory cytokine interleukin 10 by phagocytic cells after the apoptotic phase of the infection. Thus, immunodeficient mice were more resistant relative to normal mice because the latter went through a stage of lymphocyte apoptosis that was detrimental to the innate immune response. This is an example of a bacterial pathogen creating a cascade of events that leads to a permissive infective niche early during infection.


Journal of Immunology | 2004

Listeriolysin O from Listeria monocytogenes Is a Lymphocyte Apoptogenic Molecule

Javier A. Carrero; Boris Calderon; Emil R. Unanue

Infection of mice with Listeria monocytogenes caused marked lymphocyte apoptosis in the white pulp of the spleen on day 2 postinfection. We prove in this study that listeriolysin O (LLO), a pore-forming molecule and a major virulence factor of Listeria, could directly induce murine lymphocyte apoptosis both in vivo and in vitro at nanomolar and subnanomolar doses. Induction of apoptosis by LLO was rapid, with caspase activation seen as early as 30 min post-treatment. T cells lost their mitochondrial membrane potential and exposed phosphatidylserine within 8 h of treatment. Incubation of lymphocytes with a pan-caspase inhibitor blocked DNA laddering and caspase-3 activation, but did not block phosphatidylserine exposure or loss of mitochondrial membrane potential. We describe a novel function for LLO: induction of lymphocyte apoptosis with rapid kinetics, effected by both caspase-dependent and -independent pathways.


Journal of Experimental Medicine | 2015

The pancreas anatomy conditions the origin and properties of resident macrophages

Boris Calderon; Javier A. Carrero; Stephen T. Ferris; Dorothy K. Sojka; Lindsay Moore; Slava Epelman; Kenneth M. Murphy; Wayne M. Yokoyama; Gwendalyn J. Randolph; Emil R. Unanue

Calderon et al. define the origin, turnover, and functional characteristics of pancreatic macrophages at both the exocrine and endocrine sites under noninflammatory conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Distinct recognition by two subsets of T cells of an MHC class II-peptide complex

Zheng Pu; Javier A. Carrero; Emil R. Unanue

We examine here the nature of the differential recognition by CD4+ T cells of a single peptide from hen-egg white lysozyme (HEL) presented by I-Ak class II MHC molecules. Two subsets of T cells (called A and B) interact with the same peptide, each in unique ways that reflect the nature of the complex of peptide and MHC. We show that the A and B set of T cells can be distinguished by their functional interaction with the three T cell receptor (TCR) contact residues of the bound peptide. The dominant peptide of HEL selected from processing is bound in a single register where a critical TCR contact residue is situated about the middle of the core segment of the peptide: all T cells establish functional contact with it. Three sets of T cells, however, can be distinguished by their differential recognition of two TCR contacts situated at the amino and carboxyl sides of the central TCR contact residue. Type A T cells, the conventional cells that see the peptide after processing of HEL, need to recognize all three TCR contact residues. In contrast, the type B T cells recognize the peptide given exogenously, but not when processed: these T cells recognize either one of the peripheral TCR contact residues, indicating a much more flexible interaction of peptide with I-Ak molecules. We discuss the mode of generation of the various T cells and their biological relevance.


PLOS ONE | 2013

Defining the transcriptional and cellular landscape of type 1 diabetes in the NOD mouse.

Javier A. Carrero; Boris Calderon; Fadi Towfic; Maxim N. Artyomov; Emil R. Unanue

Our ability to successfully intervene in disease processes is dependent on definitive diagnosis. In the case of autoimmune disease, this is particularly challenging because progression of disease is lengthy and multifactorial. Here we show the first chronological compendium of transcriptional and cellular signatures of diabetes in the non-obese diabetic mouse. Our data relates the immunological environment of the islets of Langerhans with the transcriptional profile at discrete times. Based on these data, we have parsed diabetes into several discrete phases. First, there is a type I interferon signature that precedes T cell activation. Second, there is synchronous infiltration of all immunological cellular subsets and a period of control. Finally, there is the killing phase of the diabetogenic process that is correlated with an NF-kB signature. Our data provides a framework for future examination of autoimmune diabetes and its disease progression markers.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Cellular and molecular events in the localization of diabetogenic T cells to islets of Langerhans.

Boris Calderon; Javier A. Carrero; Mark J. Miller; Emil R. Unanue

Understanding the entry of autoreactive T cells to their target organ is important in autoimmunity because this entry initiates the inflammatory process. Here, the events that lead to specific localization of diabetogenic CD4 T cells into islets of Langerhans resulting in diabetes were examined. This was evaluated in two models, one in which T cells specific for a hen-egg white lysozyme (HEL) peptide were injected into mice expressing HEL on β cells and the other using T cells in the nonobese diabetic mouse strain, which develops spontaneous diabetes. Only T cells specific for β-cell antigens localized in islets within the first hours after their injection and were found adherent to intraislet dendritic cells (DCs). DCs surrounded blood vessels with dendrites reaching into the vessels. Localization of antigen-specific T cells did not require chemokine receptor signaling but involved class II histocompatibility and intercellular adhesion molecule 1 molecules. We found no evidence for nonspecific localization of CD4 T cells into normal noninflamed islets. Thus, the anatomy of the islet of Langerhans permits the specific localization of diabetogenic T cells at a time when there is no inflammation in the islets.


Immunity | 2014

A Minor Subset of Batf3-Dependent Antigen-Presenting Cells in Islets of Langerhans Is Essential for the Development of Autoimmune Diabetes

Stephen T. Ferris; Javier A. Carrero; James F. Mohan; Boris Calderon; Kenneth M. Murphy; Emil R. Unanue

Autoimmune diabetes is characterized by inflammatory infiltration; however, the initiating events are poorly understood. We found that the islets of Langerhans in young nonobese diabetic (NOD) mice contained two antigen-presenting cell (APC) populations: a major macrophage and a minor CD103(+) dendritic cell (DC) population. By 4 weeks of age, CD4(+) T cells entered islets coincident with an increase in CD103(+) DCs. In order to examine the role of the CD103(+) DCs in diabetes, we examined Batf3-deficient NOD mice that lacked the CD103(+) DCs in islets and pancreatic lymph nodes. This led to a lack of autoreactive T cells in islets and, importantly, no incidence of diabetes. Additional examination revealed that presentation of major histocompatibility complex (MHC) class I epitopes in the pancreatic lymph nodes was absent with a partial impairment of MHC class II presentation. Altogether, this study reveals that CD103(+) DCs are essential for autoimmune diabetes development.

Collaboration


Dive into the Javier A. Carrero's collaboration.

Top Co-Authors

Avatar

Emil R. Unanue

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Boris Calderon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Stephen T. Ferris

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kenneth M. Murphy

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mark J. Miller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bernd H. Zinselmeyer

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Brian T. Edelson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Julia Sim

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Maxim N. Artyomov

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John H. Russell

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge