Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javier Alegre-Abarrategui is active.

Publication


Featured researches published by Javier Alegre-Abarrategui.


Human Molecular Genetics | 2009

LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model

Javier Alegre-Abarrategui; Helen Christian; Michele M.P. Lufino; Ruxandra Mutihac; Lara Lourenço Venda; Olaf Ansorge; Richard Wade-Martins

Leucine rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of Parkinsons disease (PD) although LRRK2 function remains unclear. We report a new role for LRRK2 in regulating autophagy and describe the recruitment of LRRK2 to the endosomal-autophagic pathway and specific membrane subdomains. Using a novel human genomic reporter cellular model, we found LRRK2 to locate to membrane microdomains such as the neck of caveolae, microvilli/filopodia and intraluminal vesicles of multivesicular bodies (MVBs). In human brain and in cultured human cells LRRK2 was present in cytoplasmic puncta corresponding to MVBs and autophagic vacuoles (AVs). Expression of the common R1441C mutation from a genomic DNA construct caused impaired autophagic balance evident by the accumulation of MVBs and large AVs containing incompletely degraded material and increased levels of p62. Furthermore, the R1441C mutation induced the formation of skein-like abnormal MVBs. Conversely, LRRK2 siRNA knockdown increased autophagic activity and prevented cell death caused by inhibition of autophagy in starvation conditions. The work necessitated developing a new, more efficient recombineering strategy, which we termed Sequential insertion of Target with ovErlapping Primers (STEP) to seamlessly fuse the green fluorescent protein-derivative YPet to the human LRRK2 protein in the LRRK2 genomic locus carried by a bacterial artificial chromosome. Taken together our data demonstrate the functional involvement of LRRK2 in the endosomal-autophagic pathway and the recruitment to specific membrane microdomains in a physiological human gene expression model suggesting a novel function for this important PD-related protein.


Brain | 2015

Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain

Rosalind F. Roberts; Richard Wade-Martins; Javier Alegre-Abarrategui

Detection of Parkinson’s disease pathology is currently limited to lesions that occur late in the disease process. Roberts et al. present a new method for the direct detection of alpha-synuclein oligomers – the alpha-synuclein proximity ligation assay – and reveal previously unrecognised early-stage pathology in Parkinson’s disease post-mortem tissue.


Autophagy | 2012

A novel method for autophagy detection in primary cells: impaired levels of macroautophagy in immunosenescent T cells.

Kanchan Phadwal; Javier Alegre-Abarrategui; Alexander Scarth Watson; Luke R.G. Pike; Selvakumar Anbalagan; Ester M. Hammond; Richard Wade-Martins; Andrew J. McMichael; Paul Klenerman; Anna Katharina Simon

Autophagy is a conserved constitutive cellular process, responsible for the degradation of dysfunctional proteins and organelles. Autophagy plays a role in many diseases such as neurodegeneration and cancer; however, to date, conventional autophagy detection techniques are not suitable for clinical samples. We have developed a high throughput, statistically robust technique that quantitates autophagy in primary human leukocytes using the Image stream, an imaging flow cytometer. We validate this method on cell lines and primary cells knocked down for essential autophagy genes. Also, using this method we show that T cells have higher autophagic activity than B cells. Furthermore our results indicate that healthy primary senescent CD8+ T cells have decreased autophagic levels correlating with increased DNA damage, which may explain features of the senescent immune system and its declining function with age. This technique will allow us, for the first time, to measure autophagy levels in diseases with a known link to autophagy, while also determining the contribution of autophagy to the efficacy of drugs.


Neuropathology and Applied Neurobiology | 2008

LRRK2 is a component of granular alpha-synuclein pathology in the brainstem of Parkinson's disease.

Javier Alegre-Abarrategui; Olaf Ansorge; Margaret M. Esiri; Richard Wade-Martins

Classical Parkinsons disease (PD) is characterized by the appearance of Lewy bodies (LBs) in affected brain regions, showing mostly compact alpha‐synuclein deposition, in contrast with punctate or granular deposition, hypothesized to represent early stages of aggregation. Leucine‐rich repeat kinase 2 (LRRK2) is the commonest mutated gene in inherited and idiopathic PD. LRRK2 mutation carriers display a diverse neuropathology, including alpha‐synuclein and tau inclusions, suggesting an upstream role for LRRK2 in protein aggregation. We studied LRRK2 expression throughout the normal human brain with three different antibodies. We also examined the pattern of LRRK2 expression in relation to alpha‐synuclein aggregation and LB formation in the brainstem of sporadic LB disease. Physiological LRRK2 expression was not restricted to regions preferentially affected in PD and LRRK2 often localized to the nuclear envelope in addition to the known cytoplasmic expression. In PD, we were able to consistently detect LRRK2 in the halo of a minority (approximately 10%) of nigral LBs using three different antibodies. Only one antibody detected LRRK2 in the core of approximately 80% of classic LBs. In the lower brainstem, most notably in the dorsal motor nucleus of the vagus, we found previously unrecognized LRRK2 labelling of complex globular lesions, filled with LB‐like matter showing a punctate or granular staining for alpha‐synuclein. This was often accompanied by strong LRRK2 expression within dystrophic neurites. Our findings confirm widespread physiological LRRK2 expression in the human brain and suggest an association of LRRK2 with possible early‐stage alpha‐synuclein pathology in the brainstem of PD.


Brain | 2013

RNA dysfunction and aggrephagy at the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease continuum.

Matthew L. Thomas; Javier Alegre-Abarrategui; Richard Wade-Martins

Amyotrophic lateral sclerosis and frontotemporal dementia form two poles of a genetically, pathologically and clinically-related disease continuum. Analysis of the genes and proteins at the heart of this continuum highlights dysfunction of RNA processing and aggrephagy as crucial disease-associated pathways. TAR DNA binding protein and fused in sarcoma (FUS) are both RNA processing proteins whose dysfunction impacts on global cellular RNA regulation. The recent discovery that expression of repeat expansions in the C9orf72 gene may induce RNA foci that could sequester RNA binding proteins such as TAR DNA binding protein and FUS highlights a further possibly important mechanism of RNA dysfunction in disease. Furthermore, sequestration of key RNA binding proteins may also play an important role in sporadic disease due to the association of TAR DNA binding protein and FUS with stress granules. In a further functional convergence, ubiquilin 2, p62, valosin-containing protein and optineurin are all linked to aggrephagy, a cargo-specific subtype of autophagy important for degrading ubiquitinated target proteins through the lysosome. Notably these two key pathways interact; TAR DNA binding protein and FUS bind and regulate key aggrephagy-related genes whereas dysfunction of aggrephagy leads to cytoplasmic relocalization and aggregation of TAR DNA binding protein. The convergence of amyotrophic lateral sclerosis and frontotemporal dementia linked genes into these two pathways highlights RNA dysfunction and aggrephagy as promising areas for drug discovery. In this review we discuss the importance of each of these pathways and suggest mechanisms by which they may cause both sporadic and familial disease.


Autophagy | 2009

Parkinson disease, LRRK2 and the endocytic-autophagic pathway.

Javier Alegre-Abarrategui; Richard Wade-Martins

Neurons are quiescent cells that survive for several decades, many times the turnover time of most organelles and proteins, and so with advancing age neurons become affected by degenerative diseases. Autophagy is thought to be an important cellular mechanism preventing cell degeneration in such long-lived cells. We have recently found that the Parkinson disease (PD) gene leucine rich repeat kinase 2 (LRRK2) is directly involved in this process by acting as a negative regulator of autophagic activity. We created a novel genomic DNA reporter cellular model using a new recombineering strategy called Sequential insertion of Target with ovErlapping Primers (STEP) to express a genomic DNA locus YPet-LRRK2 fusion protein. Expression of the R1441C mutant form of LRRK2 induces a cellular phenotype of impaired autophagic balance at the convergent crossroads of the endocytic and autophagic avenues. Conversely, RNAi-induced knockdown of LRRK2 increases autophagic activity. Taken together, these data demonstrate the key role of LRRK2 in regulating autophagy and suggest modulation of LRRK2 function may represent a promising therapeutic target to help restore autophagic equilibrium in neurodegenerative diseases.


Neurobiology of Disease | 2015

TARDBP pathogenic mutations increase cytoplasmic translocation of TDP-43 and cause reduction of endoplasmic reticulum Ca²⁺ signaling in motor neurons.

Ruxandra Mutihac; Javier Alegre-Abarrategui; D Gordon; L Farrimond; M Yamasaki-Mann; Kevin Talbot; Richard Wade-Martins

The transactive response DNA binding protein (TDP-43) is a major component of the characteristic neuronal cytoplasmic inclusions seen in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Furthermore, pathogenic mutations in the gene encoding TDP-43, TARDBP, are found in sporadic and familial ALS cases. To study the molecular mechanisms of cellular toxicity due to TDP-43 mutations we generated a novel in vitro cellular model using a fluorescently tagged human genomic TARDBP locus carrying one of two ALS-associated mutations, A382T or M337V, which were used to generate site-specific bacterial artificial chromosome (BAC) human stable cell lines and BAC transgenic mice. In cell lines and primary motor neurons in culture, TDP-M337V mislocalized to the cytoplasm more frequently than wild-type TDP (wt-TDP) and TDP-A382T, an effect potentiated by oxidative stress. Expression of mutant TDP-M337V correlated with increased apoptosis detected by cleaved caspase-3 staining. Cells expressing mislocalized TDP-M337V spontaneously developed cytoplasmic aggregates, while for TDP-A382T aggregates were only revealed after endoplasmic reticulum (ER) stress induced by the calcium-modifying drug thapsigargin. Lowering Ca(2+) concentration in the ER of wt-TDP cells partially recapitulated the effect of pathogenic mutations by increasing TDP-43 cytoplasmic mislocalization, suggesting Ca(2+) dysregulation as a potential mediator of pathology through alterations in Bcl-2 protein levels. Ca(2+) signaling from the ER was impaired in immortalized cells and primary neurons carrying TDP-43 mutations, with a 50% reduction in the levels of luminal ER Ca(2+) stores content and delayed Ca(2+) release compared with cells carrying wt-TDP. The deficits in Ca(2+) release in human cells correlated with the upregulation of Bcl-2 and siRNA-mediated knockdown of Bcl-2 restored the amplitude of Ca(2+) oscillations in TDP-M337V cells. These results suggest that TDP-43 pathogenic mutations elicit cytoplasmic mislocalization of TDP-43 and Bcl-2 mediated ER Ca(2+) signaling dysregulation.


Human Molecular Genetics | 2016

LRRK2 BAC transgenic rats develop progressive, L-DOPA-responsive motor impairment, and deficits in dopamine circuit function

M Sloan; Javier Alegre-Abarrategui; D Potgieter; Ak Kaufmann; Richard Exley; T Deltheil; Sarah Threlfell; Natalie Connor-Robson; Katherine R. Brimblecombe; R Wallings; Milena Cioroch; David M. Bannerman; J P Bolam; Peter J. Magill; Stephanie J. Cragg; Paul D. Dodson; Richard Wade-Martins

Mutations in leucine-rich repeat kinase 2 (LRRK2) lead to late-onset, autosomal dominant Parkinsons disease, characterized by the degeneration of dopamine neurons of the substantia nigra pars compacta, a deficit in dopamine neurotransmission and the development of motor and non-motor symptoms. The most prevalent Parkinsons disease LRRK2 mutations are located in the kinase (G2019S) and GTPase (R1441C) encoding domains of LRRK2. To better understand the sequence of events that lead to progressive neurophysiological deficits in vulnerable neurons and circuits in Parkinsons disease, we have generated LRRK2 bacterial artificial chromosome transgenic rats expressing either G2019S or R1441C mutant, or wild-type LRRK2, from the complete human LRRK2 genomic locus, including endogenous promoter and regulatory regions. Aged (18–21 months) G2019S and R1441C mutant transgenic rats exhibit L-DOPA-responsive motor dysfunction, impaired striatal dopamine release as determined by fast-scan cyclic voltammetry, and cognitive deficits. In addition, in vivo recordings of identified substantia nigra pars compacta dopamine neurons in R1441C LRRK2 transgenic rats reveal an age-dependent reduction in burst firing, which likely results in further reductions to striatal dopamine release. These alterations to dopamine circuit function occur in the absence of neurodegeneration or abnormal protein accumulation within the substantia nigra pars compacta, suggesting that nigrostriatal dopamine dysfunction precedes detectable protein aggregation and cell death in the development of Parkinsons disease. In conclusion, our longitudinal deep-phenotyping provides novel insights into how the genetic burden arising from human mutant LRRK2 manifests as early pathophysiological changes to dopamine circuit function and highlights a potential model for testing Parkinsons therapeutics.


Human Molecular Genetics | 2013

A GAA repeat expansion reporter model of Friedreich's ataxia recapitulates the genomic context and allows rapid screening of therapeutic compounds

Michele M.P. Lufino; Ana M. Silva; Andrea H. Németh; Javier Alegre-Abarrategui; Angela J. Russell; Richard Wade-Martins

Friedreichs ataxia (FRDA) is caused by large GAA expansions in intron 1 of the frataxin gene (FXN), which lead to reduced FXN expression through a mechanism not fully understood. Understanding such mechanism is essential for the identification of novel therapies for FRDA and this can be accelerated by the development of cell models which recapitulate the genomic context of the FXN locus and allow direct comparison of normal and expanded FXN loci with rapid detection of frataxin levels. Here we describe the development of the first GAA-expanded FXN genomic DNA reporter model of FRDA. We modified BAC vectors carrying the whole FXN genomic DNA locus by inserting the luciferase gene in exon 5a of the FXN gene (pBAC-FXN-Luc) and replacing the six GAA repeats present in the vector with an ∼310 GAA repeat expansion (pBAC-FXN-GAA-Luc). We generated human clonal cell lines carrying the two vectors using site-specific integration to allow direct comparison of normal and expanded FXN loci. We demonstrate that the presence of expanded GAA repeats recapitulates the epigenetic modifications and repression of gene expression seen in FRDA. We applied the GAA-expanded reporter model to the screening of a library of novel small molecules and identified one molecule which up-regulates FXN expression in FRDA patient primary cells and restores normal histone acetylation around the GAA repeats. These results suggest the potential use of genomic reporter cell models for the study of FRDA and the identification of novel therapies, combining physiologically relevant expression with the advantages of quantitative reporter gene expression.


Acta Neuropathologica | 2017

Alpha-synuclein oligomers: a new hope.

Nora Bengoa-Vergniory; Rosalind F. Roberts; Richard Wade-Martins; Javier Alegre-Abarrategui

Alpha-synuclein is a protein implicated in Parkinson’s disease and thought to be one of the main pathological drivers in the disease, although it remains unclear how this protein elicits its neurotoxic effects. Recent findings indicate that the assembly of toxic oligomeric species of alpha-synuclein may be one of the key processes for the pathology and spread of the disease. The absence of a sensitive in situ detection method has hindered the study of these oligomeric species and the role they play in the human brain until recently. In this review, we assess the evidence for the toxicity and prion-like activity of oligomeric forms of alpha-synuclein and discuss the advances in our understanding of the role of alpha-synuclein in Parkinson’s disease that may be brought about by the specific and sensitive detection of distinct oligomeric species in post-mortem patient brain. Finally, we discuss current approaches being taken to therapeutically target alpha-synuclein oligomers and their implications.

Collaboration


Dive into the Javier Alegre-Abarrategui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge