Javier Atalah
Cawthron Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Javier Atalah.
PLOS ONE | 2013
Barrie M. Forrest; Lauren M. Fletcher; Javier Atalah; Richard F. Piola; Grant A. Hopkins
Non-indigenous species can dominate fouling assemblages on artificial structures in marine environments; however, the extent to which infected structures act as reservoirs for subsequent spread to natural habitats is poorly understood. Didemnum vexillum is one of few colonial ascidian species that is widely reported to be highly invasive in natural ecosystems, but which in New Zealand proliferates only on suspended structures. Experimental work revealed that D. vexillum established equally well on suspended artificial and natural substrata, and was able to overgrow suspended settlement plates that were completely covered in other cosmopolitan fouling species. Fragmentation led to a level of D. vexillum cover that was significantly greater than was achieved as a result of ambient larval recruitment. The species failed to establish following fragment transplants onto seabed cobbles and into beds of macroalgae. The establishment success of D. vexillum was greatest in summer compared with autumn, and on the underside of experimental settlement plates that were suspended off the seabed to avoid benthic predators. Where benthic predation pressure was reduced by caging, D. vexillum establishment success was broadly comparable to suspended treatments; by contrast, the species did not establish on the face-up aspect of uncaged plates. This study provides compelling evidence that benthic predation was a key mechanism that prevented D. vexillum’s establishment in the cobble habitats of the study region. The widespread occurrence of D. vexillum on suspended anthropogenic structures is consistent with evidence for other sessile invertebrates that such habitats provide a refuge from benthic predation. For invasive species generally, anthropogenic structures are likely to be most important as propagule reservoirs for spread to natural habitats in situations where predation and other mechanisms do not limit their subsequent proliferation.
Marine Environmental Research | 2016
Olivier Laroche; Susanna A. Wood; Louis A. Tremblay; Joanne Ellis; Franck Lejzerowicz; Jan Pawlowski; Gavin Lear; Javier Atalah; Xavier Pochon
At present, environmental impacts from offshore oil and gas activities are partly determined by measuring changes in macrofauna diversity. Morphological identification of macrofauna is time-consuming, expensive and dependent on taxonomic expertise. In this study, we evaluated the applicability of using foraminiferal-specific metabarcoding for routine monitoring. Sediment samples were collected along distance gradients from two oil platforms off Taranaki (New Zealand) and their physico-chemical properties, foraminiferal environmental DNA/RNA, and macrofaunal composition analyzed. Macrofaunal and foraminiferal assemblages showed similar shifts along impact gradients, but responded differently to environmental perturbations. Macrofauna were affected by hypoxia, whereas sediment grain size appeared to drive shifts in foraminifera. We identified eight foraminiferal molecular operational taxonomic units that have potential to be used as bioindicator taxa. Our results show that metabarcoding represents an effective tool for assessing foraminiferal communities near offshore oil and gas platforms, and that it can be used to complement current monitoring techniques.
Inland Waters | 2016
Val H. Smith; Susanna A. Wood; Chris G. McBride; Javier Atalah; David P. Hamilton; Jonathan Michael Abell
Abstract Anthropogenic activity has greatly enhanced the inputs of nitrogen (N) and phosphorus (P) to lakes, causing widespread eutrophication. Algal or cyanobacterial blooms are among the most severe consequences of eutrophication, impacting aquatic food webs and humans that rely on lakes for ecosystem services. In New Zealand, recent debate on the relative importance of N versus P control for limiting occurrences of algal blooms has centered on the iconic Lake Rotorua (North Island). Water quality in Lake Rotorua has declined since the late 1800s following catchment vegetation clearing and subsequent land-use intensification, as well as from sewage inputs. A multimillion dollar restoration programme began in the early 2000s, with key mitigation actions including nutrient load targets for the entire catchment and alum dosing in 2 tributaries. In this manuscript we analyse 2 water quality datasets (>10 yr) from Lake Rotorua and compare these with a global lake dataset. Generalised additive models predicted highly significant (p < 0.001) declines in total phosphorus (TP), total nitrogen (TN) and chlorophyll a (Chl- a) in surface waters between 2001 and 2015. Alum dosing had a negative (i.e., reducing) and highly significant effect on TP and Chl- a (p < 0.001). Correlations of Chl- a on TP and TN were highly significant, but the difference between the 2 correlation coefficients was not, indicating a need to control both nutrients to reduce algal productivity. This conclusion is reinforced by recent bioassay studies which show co-limitation by N and P. Collectively, our data and previous studies provide strong support for the current strategy of limiting both N and P loads to Lake Rotorua for effective eutrophication control.
Biofouling | 2013
Javier Atalah; Holly Bennett; Grant A. Hopkins; Barrie M. Forrest
Augmentative biocontrol, defined as the use of indigenous natural enemies to control pest populations, has not been explored extensively in marine systems. This study tested the potential of the anemone Anthothoe albocincta as a biocontrol agent for biofouling on submerged artificial structures. Biofouling biomass was negatively related to anemone cover. Treatments with high anemone cover (>35%) led to significant changes in biofouling assemblages compared to controls. Taxa that contributed to these changes differed among sites, but included reductions in cover of problematic fouling organisms, such as solitary ascidians and bryozoans. In laboratory trials, A. albocincta substantially prevented the settlement of larvae of the bryozoan Bugula neritina when exposed to three levels of larval dose, suggesting predation as an important biocontrol mechanism, in addition to space pre-emption. This study demonstrated that augmentative biocontrol using anemones has the potential to reduce biofouling on marine artificial structures, although considerable further work is required to refine this tool before its application.
Biofouling | 2014
Javier Atalah; Emma M. Newcombe; Grant A. Hopkins; Barrie M. Forrest
The accumulation of biofouling on coastal structures can lead to operational impacts and may harbour problematic organisms, including non-indigenous species. Benthic predators and grazers that can supress biofouling, and which are able to be artificially enhanced, have potential value as augmentative biocontrol agents. The ability of New Zealand native invertebrates to control biofouling on marina pontoons and wharf piles was tested. Caging experiments evaluated the ability of biocontrol to mitigate established biofouling, and to prevent fouling accumulation on defouled surfaces. On pontoons, the gastropods Haliotis iris and Cookia sulcata reduced established biofouling cover by >55% and largely prevented the accumulation of new biofouling over three months. On wharf piles C. sulcata removed 65% of biofouling biomass and reduced its cover by 73%. C. sulcata also had better retention and survival rates than other agents. Augmentative biocontrol has the potential to be an effective method to mitigate biofouling on marine structures.
PLOS ONE | 2013
Javier Atalah; Grant A. Hopkins; Barrie M. Forrest
Augmentative biocontrol aims to control established pest populations through enhancement of their indigenous enemies. To our knowledge, this approach has not been applied at an operational scale in natural marine habitats, in part because of the perceived risk of adverse non-target effects on native ecosystems. In this paper, we focus on the persistence, spread and non-target effects of the sea urchin Evechinus chloroticus when used as biocontrol agent to eradicate an invasive kelp from Fiordland, New Zealand. Rocky reef macrobenthic assemblages were monitored over 17 months in areas where the indigenous algal canopy was either removed or left intact prior to the translocation of a large number of urchins (>50 ind.·m−2). Urchin densities in treated areas significantly declined ∼9 months after transplant, and began spreading to adjacent sites. At the end of the 17-month study, densities had declined to ∼5 ind.·m−2. Compared to controls, treatment sites showed persistent shifts from kelp forest to urchin barrens, which were accompanied by significant reductions in taxa richness. Although these non-target effects were pronounced, they were considered to be localised and reversible, and arguably outweigh the irreversible and more profound ecological impacts associated with the establishment of an invasive species in a region of high conservation value. Augmentative biocontrol, used in conjunction with traditional control methods, represents a promising tool for the integrated management of marine pests.
Freshwater Science | 2017
Susanna A. Wood; Javier Atalah; Annika Wagenhoff; Logan Brown; Kati Doehring; Roger G. Young; Ian Hawes
Proliferations of the benthic anatoxin-producing cyanobacterium Phormidium are increasing in prevalence in cobble-bed rivers worldwide. This proliferation is of particular concern when rivers are used as sources of drinking water or for recreation. Little is known about the physicochemical variables promoting proliferations, and our existing knowledge is based on data from only a few rivers. We assessed Phormidium cover, physicochemical variables, and anatoxin concentrations at 10 sites in 7 New Zealand rivers every week for 2 y. Generalized additive mixed models (GAMMs) identified dissolved inorganic N (DIN) over the accrual period <0.8 mg/L, dissolved reactive P accrual <0.005 mg/L, water temperatures >15°C, and conductivity as having positive and statistically significant effects on % Phormidium cover. Flow intensity, expressed relative to the long-term median, had a positive effect up to 0.4× the median flow and a negative effect when >0.5× the median flow. Quantile regression models showed marked variability among sites in relation to the flow intensity required to reduce % Phormidium cover (90th percentile ranged 0.65–249× the long-term median flow). Anatoxins were detected in variable concentrations in samples from 7 of the 10 sites. GAMMs identified strong relationships between elevated toxin concentrations and low conductivity and increasing % Phormidium cover, and significantly lower toxin concentrations when DIN was <0.2 mg/L. These data demonstrate that multiple physicochemical variables influence Phormidium proliferations and toxin concentrations and indicate that the relative importance of these variables differs among rivers and sites.
Biofouling | 2016
Javier Atalah; Rosemary Brook; Patrick L. Cahill; Lauren M. Fletcher; Grant A. Hopkins
Abstract Encapsulation of fouled structures is an effective tool for countering incursions by non-indigenous biofoulers. However, guidelines for the implementation of encapsulation treatments are yet to be established. This study evaluated the effects of temperature, biomass, community composition, treatment duration and the biocide acetic acid on biofoulers. In laboratory trials using the model organisms Ciona spp. and Mytilus galloprovincialis, increasing the temperature or biomass speeded up the development of a toxic environment. Total mortality for Ciona spp. occurred within 72 and 24 h at 10 and 19°C, respectively. M. galloprovincialis survived up to 18 days, with high biomass increasing mortality at 10°C only. In a field study, three-month-old and four-year-old communities were encapsulated with and without acetic acid. Mortality took up to 10 days for communities encapsulated without acetic acid, compared to 48 h with acetic acid. The insights gained from this study will be useful in developing standardised encapsulation protocols.
Science of The Total Environment | 2018
Tara G. McAllister; Susanna A. Wood; Javier Atalah; Ian Hawes
Toxic benthic cyanobacterial proliferations, particularly of the genus Phormidium, are a major concern in many countries due to their increasing extent and severity. The aim of this study was to improve the current understanding of the dominant physicochemical variables associated with high Phormidium cover and toxin concentrations. Phormidium cover and anatoxin concentrations were assessed weekly for 30weeks in eight predominately cobble-bed rivers in the South Island of New Zealand. Phormidium cover was highly variable both spatially (among and within sites) and temporally. Generalized additive mixed models (GAMMs) identified site, month of the year, conductivity and nutrient concentrations over the accrual period as significant variables associated with Phormidium cover. Cover was greatest under low to intermediate accrual dissolved inorganic nitrogen (DIN) and dissolved reactive phosphorus (DRP) concentrations. Accrual nutrients had a strong, negative effect on cover at concentrations>0.2mgL-1 DIN and 0.014mgL-1 DRP. The effect of flow was generally consistent across rivers, with cover accruing with time since the last flushing flow. Total anatoxins were detected at all eight study sites, at concentrations ranging from 0.008 to 662.5mgkg-1 dried weight. GAMMs predicted higher total anatoxin concentrations between November and February and during periods of accrual DRP<0.02mgL-1. This study suggests that multiple physicochemical variables may influence Phormidium proliferations and also evidenced large site-to-site variability. This result highlights a challenge from a management perspective, as it suggests that mitigation options are likely to be site-specific.
PeerJ | 2016
Patrick L. Cahill; Javier Atalah; Andrew I. Selwood; Jeanne M. Kuhajek
In this study, the effects of environmental variables on larval metamorphosis of the solitary ascidian Ciona savignyi were investigated in a laboratory setting. The progression of metamorphic changes were tracked under various temperature, photoperiod, substrate, larval density, and vessel size regimes. Metamorphosis was maximised at 18 °C, 12:12 h subdued light:dark, smooth polystyrene substrate, and 10 larvae mL−1 in a twelve-well tissue culture plate. Eliminating the air-water interface by filling culture vessels to capacity further increased the proportion of metamorphosed larvae; 87 ± 5% of larvae completed metamorphosis within 5 days compared to 45 ± 5% in control wells. The effects of the reference antifouling compounds polygodial, portimine, oroidin, chlorothalonil, and tolylfluanid on C. savignyi were subsequently determined, highlighting (1) the sensitivity of C. savignyi metamorphosis to chemical exposure and (2) the potential to use C. savignyi larvae to screen for bioactivity in an optimised laboratory setting. The compounds were bioactive in the low ng mL−1 to high µg mL−1 range. Polygodial was chosen for additional investigations, where it was shown that mean reductions in the proportions of larvae reaching stage E were highly repeatable both within (repeatability = 14 ± 9%) and between (intermediate precision = 17 ± 3%) independent experiments. An environmental extract had no effect on the larvae but exposing larvae to both the extract and polygodial reduced potency relative to polygodial alone. This change in potency stresses the need for caution when working with complex samples, as is routinely implemented when isolating natural compounds from their biological source. Overall, the outcomes of this study highlight the sensitivity of C. savignyi metamorphosis to environmental variations and chemical exposure.