Javier Barallobre-Barreiro
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Javier Barallobre-Barreiro.
Circulation | 2012
Javier Barallobre-Barreiro; Athanasios Didangelos; Friedrich Schoendube; Ignat Drozdov; Xiaoke Yin; Mariana Fernández-Caggiano; Peter Willeit; Valentina O. Puntmann; Guillermo Aldama-López; Ajay M. Shah; Nieves Doménech; Manuel Mayr
Background— After myocardial ischemia, extracellular matrix (ECM) deposition occurs at the site of the focal injury and at the border region. Methods and Results— We have applied a novel proteomic method for the analysis of ECM in cardiovascular tissues to a porcine model of ischemia/reperfusion injury. ECM proteins were sequentially extracted and identified by liquid chromatography tandem mass spectrometry. For the first time, ECM proteins such as cartilage intermediate layer protein 1, matrilin-4, extracellular adipocyte enhancer binding protein 1, collagen &agr;-1(XIV), and several members of the small leucine-rich proteoglycan family, including asporin and prolargin, were shown to contribute to cardiac remodeling. A comparison in 2 distinct cardiac regions (the focal injury in the left ventricle and the border region close to the occluded coronary artery) revealed a discordant regulation of protein and mRNA levels; although gene expression for selected ECM proteins was similar in both regions, the corresponding protein levels were much higher in the focal lesion. Further analysis based on >100 ECM proteins delineated a signature of early- and late-stage cardiac remodeling with transforming growth factor-&bgr;1 signaling at the center of the interaction network. Finally, novel cardiac ECM proteins identified by proteomics were validated in human left ventricular tissue acquired from ischemic cardiomyopathy patients at cardiac transplantation. Conclusion— Our findings reveal a biosignature of early- and late-stage ECM remodeling after myocardial ischemia/reperfusion injury, which may have clinical utility as a prognostic marker and modifiable target for drug discovery.
Circulation Research | 2013
Mélanie Abonnenc; Adam Nabeebaccus; Ursula Mayr; Javier Barallobre-Barreiro; Xuebin Dong; Friederike Cuello; Sumon Sur; Ignat Drozdov; Sarah R. Langley; Ruifang Lu; Konstantina Stathopoulou; Athanasios Didangelos; Xiaoke Yin; Wolfram-Hubertus Zimmermann; Ajay M. Shah; Anna Zampetaki; Manuel Mayr
Rationale: MicroRNAs (miRNAs), in particular miR-29b and miR-30c, have been implicated as important regulators of cardiac fibrosis. Objective: To perform a proteomics comparison of miRNA effects on extracellular matrix secretion by cardiac fibroblasts. Methods and Results: Mouse cardiac fibroblasts were transfected with pre-/anti-miR of miR-29b and miR-30c, and their conditioned medium was analyzed by mass spectrometry. miR-29b targeted a cadre of proteins involved in fibrosis, including multiple collagens, matrix metalloproteinases, and leukemia inhibitory factor, insulin-like growth factor 1, and pentraxin 3, 3 predicted targets of miR-29b. miR-29b also attenuated the cardiac fibroblast response to transforming growth factor-&bgr;. In contrast, miR-30c had little effect on extracellular matrix production but opposite effects regarding leukemia inhibitory factor and insulin-like growth factor 1. Both miRNAs indirectly affected cardiac myocytes. On transfection with pre–miR-29b, the conditioned medium of cardiac fibroblasts lost its ability to support adhesion of rat ventricular myocytes and led to a significant reduction of cardiac myocyte proteins (&agr;-actinin, cardiac myosin-binding protein C, and cardiac troponin I). Similarly, cardiomyocytes derived from mouse embryonic stem cells atrophied under pre–miR-29 conditioned medium, whereas pre–miR-30c conditioned medium had a prohypertrophic effect. Levels of miR-29a, miR-29c, and miR-30c, but not miR-29b, were significantly reduced in a mouse model of pathological but not physiological hypertrophy. Treatment with antagomiRs to miR-29b induced excess fibrosis after aortic constriction without overt deterioration in cardiac function. Conclusions: Our proteomic analysis revealed novel molecular targets of miRNAs that are linked to a fibrogenic cardiac phenotype. Such comprehensive screening methods are essential to define the concerted actions of miRNAs in cardiovascular disease.Rationale: MicroRNAs (miRNAs), in particular miR-29b and miR-30c, have been implicated as important regulators of cardiac fibrosis. Objective: To perform a proteomics comparison of miRNA effects on extracellular matrix secretion by cardiac fibroblasts. Methods and Results: Mouse cardiac fibroblasts were transfected with pre-/anti-miR of miR-29b and miR-30c, and their conditioned medium was analyzed by mass spectrometry. miR-29b targeted a cadre of proteins involved in fibrosis, including multiple collagens, matrix metalloproteinases, and leukemia inhibitory factor, insulin-like growth factor 1, and pentraxin 3, 3 predicted targets of miR-29b. miR-29b also attenuated the cardiac fibroblast response to transforming growth factor-β. In contrast, miR-30c had little effect on extracellular matrix production but opposite effects regarding leukemia inhibitory factor and insulin-like growth factor 1. Both miRNAs indirectly affected cardiac myocytes. On transfection with pre–miR-29b, the conditioned medium of cardiac fibroblasts lost its ability to support adhesion of rat ventricular myocytes and led to a significant reduction of cardiac myocyte proteins (α-actinin, cardiac myosin-binding protein C, and cardiac troponin I). Similarly, cardiomyocytes derived from mouse embryonic stem cells atrophied under pre–miR-29 conditioned medium, whereas pre–miR-30c conditioned medium had a prohypertrophic effect. Levels of miR-29a, miR-29c, and miR-30c, but not miR-29b, were significantly reduced in a mouse model of pathological but not physiological hypertrophy. Treatment with antagomiRs to miR-29b induced excess fibrosis after aortic constriction without overt deterioration in cardiac function. Conclusions: Our proteomic analysis revealed novel molecular targets of miRNAs that are linked to a fibrogenic cardiac phenotype. Such comprehensive screening methods are essential to define the concerted actions of miRNAs in cardiovascular disease. # Novelty and Significance {#article-title-44}
Circulation Research | 2014
Anna Zampetaki; Rizwan Attia; Ursula Mayr; Renata S.M. Gomes; Alkystis Phinikaridou; Xiaoke Yin; Sarah R. Langley; Peter Willeit; Ruifang Lu; Bruce Fanshawe; Marika Fava; Javier Barallobre-Barreiro; Chris Molenaar; Po-Wah So; Abeera Abbas; Marjan Jahangiri; Matthew Waltham; René M. Botnar; Alberto Smith; Manuel Mayr
Rationale: Abdominal aortic aneurysms constitute a degenerative process in the aortic wall. Both the miR-29 and miR-15 families have been implicated in regulating the vascular extracellular matrix. Objective: Our aim was to assess the effect of the miR-15 family on aortic aneurysm development. Methods and Results: Among the miR-15 family members, miR-195 was differentially expressed in aortas of apolipoprotein E–deficient mice on angiotensin II infusion. Proteomics analysis of the secretome of murine aortic smooth muscle cells, after miR-195 manipulation, revealed that miR-195 targets a cadre of extracellular matrix proteins, including collagens, proteoglycans, elastin, and proteins associated with elastic microfibrils, albeit miR-29b showed a stronger effect, particularly in regulating collagens. Systemic and local administration of cholesterol-conjugated antagomiRs revealed better inhibition of miR-195 compared with miR-29b in the uninjured aorta. However, in apolipoprotein E–deficient mice receiving angiotensin II, silencing of miR-29b, but not miR-195, led to an attenuation of aortic dilation. Higher aortic elastin expression was accompanied by an increase of matrix metalloproteinases 2 and 9 in mice treated with antagomiR-195. In human plasma, an inverse correlation of miR-195 was observed with the presence of abdominal aortic aneurysms and aortic diameter. Conclusions: We provide the first evidence that miR-195 may contribute to the pathogenesis of aortic aneurysmal disease. Although inhibition of miR-29b proved more effective in preventing aneurysm formation in a preclinical model, miR-195 represents a potent regulator of the aortic extracellular matrix. Notably, plasma levels of miR-195 were reduced in patients with abdominal aortic aneurysms suggesting that microRNAs might serve as a noninvasive biomarker of abdominal aortic aneurysms.
Circulation-cardiovascular Genetics | 2013
Christin Stegemann; Athanasios Didangelos; Javier Barallobre-Barreiro; Sarah R. Langley; Kaushik Mandal; Marjan Jahangiri; Manuel Mayr
Background—Matrix metalloproteinases (MMPs) play a key role in cardiovascular disease, in particular aneurysm formation and plaque rupture. Surprisingly, little is known about MMP substrates in the vasculature. Methods and Results—We used a proteomics approach to identify vascular substrates for 3 MMPs, 1 of each of the 3 major classes of MMPs: Human arteries were incubated with MMP-3 (a member of stromelysins), MMP-9 (considered a gelatinase), and MMP-14 (considered a member of the collagenases and of the membrane-bound MMPs). Candidate substrates were identified by mass spectrometry based on increased release from the arterial tissue on digestion, spectral evidence for proteolytic degradation after gel separation, and identification of nontryptic cleavage sites. Using this approach, novel candidates were identified, including extracellular matrix proteins associated with the basement membrane, elastic fibers (emilin-1), and other extracellular proteins (periostin, tenascin-X). Seventy-four nontryptic cleavage sites were detected, many of which were shared among different MMPs. The proteomics findings were validated by immunoblotting and by digesting recombinant/purified proteins with exogenous MMPs. As proof-of-principle, results were related to in vivo pathology by searching for corresponding degradation products in human aortic tissue with different levels of endogenous MMP-9. Conclusions—The application of proteomics to identify MMP targets is a new frontier in cardiovascular research. Our current classification of MMPs based on few substrates is an oversimplification of a complex area of biology. This study provides a more comprehensive assessment of potential MMP substrates in the vasculature and represents a valuable resource for future investigations.
PLOS ONE | 2012
Mariana Fernández-Caggiano; Javier Barallobre-Barreiro; Ignacio Rego-Pérez; María G. Crespo-Leiro; M.J Paniagua; Zulaika Grille; F.J. Blanco; Nieves Doménech
Background Since mitochondria are the principal source of reactive oxygen species (ROS), these organelles may play an important role in ischemic cardiomyopathy (IC) development. The mitochondrial genome may influence this disease. The aim of the present study was to test the relationship between IC development and the impact of single nucleotide polymorphisms (SNPs) in mitochondrial DNA (mtDNA) defining the mitochondrial haplogroups in a population study. Methodology and principal findings Ten major European haplogroups were identified by using the single base extension technique and by polymerase chain reaction-restriction fragment length polymorphism. Frequencies and Odds Ratios for the association between IC patients (n = 358) and healthy controls (n = 423) were calculated. No convincing associations between classical risk factors for ischemic cardiomyopathy development and haplogroups were found. However, compared to healthy controls, the prevalence of haplogroup H was significantly higher in IC patients (40.0% vs 50.0%, p-value = 0.039) while the frequency of haplogroup J was significantly lower (11.1% vs 5.6%, p-value = 0.048). The analysis of the SNPs characterizing the European mtDNA haplogroups showed that the m.7028C allele (40.0% vs 50.0%, p-value = 0.005) and m.14766C allele (43.0% vs 54.2%, p-value = 0.002) were overrepresented in IC patients, meanwhile the m.10398G allele (19.8% vs 13.1%, p-value = 0.015) and m.4216C allele (22.2% vs 16.5%, p-value = 0.044) were found as protective factors against IC. Conclusions and significance Our results showed that the haplogroups H and J were found as a risk and protective factors for ischemic cardiomyopathy development, respectively.
Journal of Clinical Investigation | 2017
Sarah R. Langley; Karin Willeit; Athanasios Didangelos; Ljubica Perisic Matic; Philipp Skroblin; Javier Barallobre-Barreiro; Mariette Lengquist; Gregor Rungger; Alexander N. Kapustin; Ludmilla Kedenko; Chris Molenaar; Ruifang Lu; Temo Barwari; Gonca Suna; Xiaoke Yin; Bernhard Iglseder; Bernhard Paulweber; Peter Willeit; Joseph Shalhoub; Gerard Pasterkamp; Alun H. Davies; Claudia Monaco; Ulf Hedin; Catherine M. Shanahan; Johann Willeit; Stefan Kiechl; Manuel Mayr
BACKGROUND. The identification of patients with high-risk atherosclerotic plaques prior to the manifestation of clinical events remains challenging. Recent findings question histology- and imaging-based definitions of the “vulnerable plaque,” necessitating an improved approach for predicting onset of symptoms. METHODS. We performed a proteomics comparison of the vascular extracellular matrix and associated molecules in human carotid endarterectomy specimens from 6 symptomatic versus 6 asymptomatic patients to identify a protein signature for high-risk atherosclerotic plaques. Proteomics data were integrated with gene expression profiling of 121 carotid endarterectomies and an analysis of protein secretion by lipid-loaded human vascular smooth muscle cells. Finally, epidemiological validation of candidate biomarkers was performed in two community-based studies. RESULTS. Proteomics and at least one of the other two approaches identified a molecular signature of plaques from symptomatic patients that comprised matrix metalloproteinase 9, chitinase 3-like-1, S100 calcium binding protein A8 (S100A8), S100A9, cathepsin B, fibronectin, and galectin-3-binding protein. Biomarker candidates measured in 685 subjects in the Bruneck study were associated with progression to advanced atherosclerosis and incidence of cardiovascular disease over a 10-year follow-up period. A 4-biomarker signature (matrix metalloproteinase 9, S100A8/S100A9, cathepsin D, and galectin-3-binding protein) improved risk prediction and was successfully replicated in an independent cohort, the SAPHIR study. CONCLUSION. The identified 4-biomarker signature may improve risk prediction and diagnostics for the management of cardiovascular disease. Further, our study highlights the strength of tissue-based proteomics for biomarker discovery. FUNDING. UK: British Heart Foundation (BHF); King’s BHF Center; and the National Institute for Health Research Biomedical Research Center based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London in partnership with King’s College Hospital. Austria: Federal Ministry for Transport, Innovation and Technology (BMVIT); Federal Ministry of Science, Research and Economy (BMWFW); Wirtschaftsagentur Wien; and Standortagentur Tirol.
Journal of Biological Chemistry | 2016
Mariana Fernández-Caggiano; Ewald Schröder; Hyun-ju Cho; Joseph R. Burgoyne; Javier Barallobre-Barreiro; Manuel Mayr; Philip Eaton
The role and responses of the dimeric DJ-1 protein to cardiac oxidative stress is incompletely understood. H2O2 induces a 50-kDa DJ-1 interprotein homodimer disulfide, known to form between Cys-53 on each subunit. A trimeric 75-kDa DJ-1 complex that mass spectrometry shows contained 2-Cys peroxiredoxin also formed and precedes the appearance of the disulfide dimer. These observations may represent peroxiredoxin sensing and transducing the oxidant signal to DJ-1. The dimeric disulfide DJ-1 complex was stabilized by auranofin, suggesting that thioredoxin recycles it in cells. Higher concentrations of H2O2 concomitantly induce DJ-1 Cys-106 hyperoxidation (sulfination or sulfonation) in myocytes, perfused heart, or HEK cells. An oxidation-resistant C53A DJ-1 shows potentiated H2O2-induced Cys-106 hyperoxidation. DJ-1 also forms multiple disulfides with unknown target proteins during H2O2 treatment, the formation of which is also potentiated in cells expressing the C53A mutant. This suggests that the intersubunit disulfide induces a conformational change that limits Cys-106 forming heterodisulfide protein complexes or from hyperoxidizing. High concentrations of H2O2 also induce cell death, with DJ-1 Cys-106 sulfonation appearing causal in these events, as expressionof C53A DJ-1 enhanced both Cys-106 sulfonation and cell death. Nonetheless, expression of the DJ-1 C106A mutant, which fully prevents hyperoxidation, also showed exacerbated cell death responses to H2O2. A rational explanation for these findings is that DJ-1 Cys-106 forms disulfides with target proteins to limit oxidant-induced cell death. However, when Cys-106 is hyperoxidized, formation of these potentially protective heterodimeric disulfide complexes is limited, and so cell death is exacerbated.
Cardiovascular Research | 2016
Javier Barallobre-Barreiro; Rahmi Oklu; Marc Lynch; Marika Fava; Xiaoke Yin; Temo Barwari; David N. Potier; Hassan Albadawi; Marjan Jahangiri; Karen E. Porter; Michael T. Watkins; Sanjay Misra; Julianne Stoughton; Manuel Mayr
Aims Extracellular matrix remodelling has been implicated in a number of vascular conditions, including venous hypertension and varicose veins. However, to date, no systematic analysis of matrix remodelling in human veins has been performed. Methods and results To understand the consequences of venous hypertension, normal and varicose veins were evaluated using proteomics approaches targeting the extracellular matrix. Varicose saphenous veins removed during phlebectomy and normal saphenous veins obtained during coronary artery bypass surgery were collected for proteomics analysis. Extracellular matrix proteins were enriched from venous tissues. The proteomics analysis revealed the presence of >150 extracellular matrix proteins, of which 48 had not been previously detected in venous tissue. Extracellular matrix remodelling in varicose veins was characterized by a loss of aggrecan and several small leucine-rich proteoglycans and a compensatory increase in collagen I and laminins. Gene expression analysis of the same tissues suggested that the remodelling process associated with venous hypertension predominantly occurs at the protein rather than the transcript level. The loss of aggrecan in varicose veins was paralleled by a reduced expression of aggrecanases. Chymase and tryptase β1 were among the up-regulated proteases. The effect of these serine proteases on the venous extracellular matrix was further explored by incubating normal saphenous veins with recombinant enzymes. Proteomics analysis revealed extensive extracellular matrix degradation after digestion with tryptase β1. In comparison, chymase was less potent and degraded predominantly basement membrane-associated proteins. Conclusion The present proteomics study provides unprecedented insights into the expression and degradation of structural and regulatory components of the vascular extracellular matrix in varicosis.
Circulation | 2018
Gonca Suna; Wojciech Wojakowski; Marc Lynch; Javier Barallobre-Barreiro; Xiaoke Yin; Ursula Mayr; Ruifang Lu; Marika Fava; Robert Hayward; Chris Molenaar; Stephen J. White; Tomasz Roleder; Krzysztof Milewski; Pawel Gasior; Piotr P. Buszman; Pawel Buszman; Marjan Jahangiri; Catherine M. Shanahan; Jonathan Hill; Manuel Mayr
Background: Extracellular matrix (ECM) remodeling contributes to in-stent restenosis and thrombosis. Despite its important clinical implications, little is known about ECM changes post–stent implantation. Methods: Bare-metal and drug-eluting stents were implanted in pig coronary arteries with an overstretch under optical coherence tomography guidance. Stented segments were harvested 1, 3, 7, 14, and 28 days post-stenting for proteomics analysis of the media and neointima. Results: A total of 151 ECM and ECM-associated proteins were identified by mass spectrometry. After stent implantation, proteins involved in regulating calcification were upregulated in the neointima of drug-eluting stents. The earliest changes in the media were proteins involved in inflammation and thrombosis, followed by changes in regulatory ECM proteins. By day 28, basement membrane proteins were reduced in drug-eluting stents in comparison with bare-metal stents. In contrast, the large aggregating proteoglycan aggrecan was increased. Aggrecanases of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family contribute to the catabolism of vascular proteoglycans. An increase in ADAMTS-specific aggrecan fragments was accompanied by a notable shift from ADAMTS1 and ADAMTS5 to ADAMTS4 gene expression after stent implantation. Immunostaining in human stented coronary arteries confirmed the presence of aggrecan and aggrecan fragments, in particular, at the contacts of the stent struts with the artery. Further investigation of aggrecan presence in the human vasculature revealed that aggrecan and aggrecan cleavage were more abundant in human arteries than in human veins. In addition, aggrecan synthesis was induced on grafting a vein into the arterial circulation, suggesting an important role for aggrecan in vascular plasticity. Finally, lack of ADAMTS-5 activity in mice resulted in an accumulation of aggrecan and a dilation of the thoracic aorta, confirming that aggrecanase activity regulates aggrecan abundance in the arterial wall and contributes to vascular remodeling. Conclusions: Significant differences were identified by proteomics in the ECM of coronary arteries after bare-metal and drug-eluting stent implantation, most notably an upregulation of aggrecan, a major ECM component of cartilaginous tissues that confers resistance to compression. The accumulation of aggrecan coincided with a shift in ADAMTS gene expression. This study provides the first evidence implicating aggrecan and aggrecanases in the vascular injury response after stenting.
Circulation | 2016
Javier Barallobre-Barreiro; Shashi Kumar Gupta; Anna Zoccarato; Rika Kitazume-Taneike; Marika Fava; Xiaoke Yin; Tessa Werner; Marc N. Hirt; Anna Zampetaki; Alessandro Viviano; Mei Chong; Marshall W. Bern; Antonios Kourliouros; Nieves Doménech; Peter Willeit; Ajay M. Shah; Marjan Jahangiri; Liliana Schaefer; Jens W. Fischer; Renato V. Iozzo; Rosa Viner; Thomas Thum; Joerg Heineke; Antoine Kichler; Kinya Otsu; Manuel Mayr
Background: Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). Methods: Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. Results: ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. On enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were identified consistently in the flowthrough. Of all ECM proteins identified, decorin was found to be the most fragmented. Within its protein core, 18 different cleavage sites were identified. In contrast, less cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was detected predominantly in ventricles in comparison with atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had greater levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. Conclusions: This proteomics study is the first to analyze the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages, can regulate the local bioavailability of antihypertrophic and profibrotic growth factors.