Javier Fernández-Solari
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Javier Fernández-Solari.
Proceedings of the National Academy of Sciences of the United States of America | 2005
Claudia Mohn; Javier Fernández-Solari; Andrea De Laurentiis; Juan Pablo Prestifilippo; Carolina de la Cal; Richard Funk; Stefan R. Bornstein; Samuel M. McCann; Valeria Rettori
The adrenal cortex is a major stress organ in mammals that reacts rapidly to a multitude of external and internal stressors. Adrenocorticotropin (ACTH) is the main stimulator of the adrenal cortex, activating corticosteroid synthesis and secretion. We evaluated the mechanism of action of ACTH on adrenals of male rats, preserving the architecture of the gland in vitro. We demonstrated that both sodium nitroprusside (NP), a nitric oxide (NO) donor, and ACTH stimulate corticosterone release. NO mediated the acute response to ACTH because Nω-nitro-l-arginine methyl ester, a NO synthase inhibitor, and hemoglobin, a NO scavenger, blocked the stimulation of corticosterone release induced by ACTH. NP stimulated prostaglandin E release, which in turn stimulated corticosterone release from the adrenal. Additionally, indomethacin, which inhibits cyclooxygenase, and thereby, prostaglandin release, prevented corticosterone release from the adrenal induced by both NP and ACTH, demonstrating that prostaglandins mediate acute corticosterone release. Corticosterone content in adrenals after incubation with ACTH or NP was lower than in control glands, indicating that any de novo synthesis of corticosterone during this period was not sufficient to keep up with the release of the stored hormone. The release induced by ACTH or NP depleted the corticosterone content in the adrenal by ≈40% compared with the content of glands incubated in buffer. The mechanism of rapid release is as follows: NO produced by NO synthase activation by ACTH activates cyclooxygenase, which generates PGE2, which in turn releases corticosterone stored in microvesicles and other organelles.
Experimental Biology and Medicine | 2006
Juan Pablo Prestifilippo; Javier Fernández-Solari; Carolina de la Cal; M. Iribarne; Angela M. Suburo; Valeria Rettori; Samuel M. McCann; Juan C. Elverdin
It is known that marijuana use decreases saliva secretion. Therefore, we hypothesized that cannabinoid receptors (CBs) are located in salivary glands to mediate that effect. In these experiments, we used the submandibular gland (SMG) of male rats, which is one of the major salivary glands. Mammalian tissues contain at least two types of CBs, CB1 and CB2, mainly located in the nervous system and peripheral tissues, respectively. Both receptors are coupled to Gi protein and respond by inhibiting the activity of adenylyl cyclase. We demonstrated that both CB1 and CB2 are present in the SMG, each showing specific localizations. The best-known endocannabinoid is anandamide (AEA), which binds with high affinity to CB1 and CB2. We showed that AEA markedly reduced forskolin-induced increase of cAMP content in vitro. This effect was blocked by AM251 and AM630 (CB1 and CB2 antagonists, respectively), indicating that both receptors are implicated in SMG physiology. In addition, we showed that AEA injected intraglandularly to anesthetized rats Inhibited norepinephrine (NE)– and methacholine (MC)–stimulated saliva secretion in vivo and that both AM251 or AM630 prevented the inhibitory action of AEA. Also, the intraglandular injection of AM251 increased saliva secretion induced by lower doses of NE or MC. This increase was synergized after coinjection with AM630. Therefore, we concluded that AEA decreases saliva secretion in the SMG acting through CB1 and CB2 receptors.
Annals of the New York Academy of Sciences | 2009
Valeria Rettori; Javier Fernández-Solari; Claudia Mohn; María Zorrilla Zubilete; Carolina de la Cal; Juan Pablo Prestifilippo; Andrea De Laurentiis
Nitric oxide (NO) was initially described as a mediator of endothelial relaxation, and now its participation is recognized in numerous physiological and pathological processes. It was demonstrated that lipopolysaccharide‐stimulated corticotropin‐releasing factor release involves NO production. Furthermore, it has been shown that interleukin (IL)‐1, tumor necrosis factor (TNF)‐α, IL‐6, and IL‐2 can stimulate adrenocorticotropic hormone release from anterior pituitary via NO. Also, we found that NO released from hypothalamic NOergic neurons in response to norepinephrine diffuses to luteinizing hormone‐releasing hormone (LHRH) neurons that activate cyclooxygenase and guanylate cyclase. This activation results in an increase in prostaglandin E2 and cyclic guanosine monophosphate, respectively, which leads to the exocytosis of LHRH granules. During pathological conditions, such as manganese intoxication, NO production is increased, leading to an increase in LHRH secretion that can advance puberty. In another study we demonstrated that NO reduces oxytocin as well as vasopressin secretion from the posterior pituitary, suggesting it has a modulatory role during dehydration. An increase in NO synthase (NOS) activity and protein in the hippocampus and cerebellum was found in offspring of rats that were subjected to prenatal stress, and this was correlated with behavioral changes in adults. Also NO participates in signal transduction pathways in peripheral tissue in physiological processes, such as in corticosterone release from the adrenal gland. Pathological conditions, such as tumors of the head and neck, that are treated with radiation are followed by xerostomy. In a rat model, radiation diminished NOS activity in the submandibulary gland, and this was followed by inhibition in salivary secretion. In summary, this review describes the wide participation of NO in the cross‐talk between neuroendocrine and neuroimmune systems in physiological and pathological processes.
Stress | 2011
Claudia Mohn; Javier Fernández-Solari; A. De Laurentiis; Stefan R. Bornstein; Monika Ehrhart-Bornstein; Valeria Rettori
All forms of stress, including restraint stress (RS) and lipopolysaccharide (LPS) administration, activate the hypothalamic–pituitary–adrenal (HPA) axis. LPS binds to a recognition protein (CD14) and toll-like receptor 2/4 in different cells and tissues, including the adrenal gland, to induce the production of cytokines and cause upregulation of cyclooxygenase and nitric oxide synthase (NOS) enzymes. Acute ethanol exposure activates the HPA axis, but in some conditions prolonged administration can dampen this activation as well as decrease the inflammatory responses to LPS. Therefore, this study was designed to evaluate the adrenal response to a challenge dose of LPS (50 μg/kg) injected i.p., after submitting male rats to RS, twice a day (2 h each time) for 5 days and/or ethanol administration (3 g/kg) by gavage also for 5 days, twice daily. At the end of the experiment, plasma corticosterone concentrations and adrenal gland content of prostaglandin E (PGE) and NOS activity were measured as stress mediators. The results showed that repetitive ethanol administration attenuated the adrenal stress response to LPS challenge alone and after RS, by preventing the increase in plasma corticosterone concentrations and by decreasing the PGE content and NOS activity in the adrenal gland. Therefore, we conclude that moderate alcohol consumption could attenuate the effects of psychophysical stress and impair an inflammatory response.
Archives of Oral Biology | 2012
Aline Maia Dantas; Claudia Mohn; Berenice Burdet; María Zorrilla Zubilete; Patricia Mandalunis; Juan C. Elverdin; Javier Fernández-Solari
OBJECTIVE The aim of this study was to assess the short term effect of ethanol administration on periodontal disease in rats. DESIGN Rats received either ethanol 2g/kg or water by gastric gavage twice a day. On the fifth day ligatures were tied around the molars of half of the rats to induce periodontitis. After 7days gingival tissue was removed and assayed for inflammatory markers. Finally, hemi-mandibles were extracted to evaluate bone loss by histomorphometrical techniques. RESULTS The experimental periodontitis increased significantly the mRNA expression (p<0.001) and activity (p<0.001) of inducible nitric oxide synthase (iNOS) in the gingival tissue, whilst short time ethanol administration increased iNOS activity (p<0.05) and produced an additive effect on iNOS mRNA expression augmented by periodontitis (p<0.01). The short time ethanol administration also potentiated the periodontitis stimulatory effect on the mRNA expression of interleukin (IL)-1β (p<0.01 and p<0.001, in semi-quantitative and real time PCR, respectively) and on the height of periodontal ligament (p<0.05). However, the ligature-induced periodontitis, but not ethanol administration, increased the prostaglandin E(2) content (p<0.05) and, diminished the alveolar bone volume (p<0.05), as compared to sham rats. CONCLUSION The present results suggest that ethanol consumption could represent a risk indicator for periodontal disease since augments the expression of inflammatory markers, in healthy rats, and increases them, at short term, during the illness. However, scale longitudinal investigation and more case-control studies are needed to confirm this statement.
Archives of Oral Biology | 2011
Mariano Amer; Juan C. Elverdin; Javier Fernández-Solari; Vanina A. Medina; A.P. Chiarenza; María I. Vacas
OBJECTIVE Saliva is the first barrier to the entry of bacteria and viruses into the body and is considered a necessary instrument in oral health. Intraperitoneal injection of lipopolysaccharide endotoxins results in submandibular gland (SMG) hyposalivation. The objective of present studies was to assess if periodontitis, a chronic inflammatory disease caused by oral bacteria, alters cholinergic-induced SMG salivary secretion. DESIGN An experimental periodontitis model (EP) (cotton thread ligature around the neck of the first lower molars) was used. Male Wistar rats (300-380g) were randomly divided into 3 groups: control, 7 days-bilateral EP and 7 days-unilateral EP (to study if there were different effects at the ipsilateral and contralateral side). The following determinations were performed in SMG: (1) dose-response curves to the cholinergic agonist methacholine, (2) prostaglandin E (PGE) content, (3) inducible nitric oxide synthase (iNOS) activity and (4) histology of gland sections. RESULTS The molars with EP, no matter the group, exhibited significant and similar bone loss (p<0.001). Bilateral EP reduced methacholine-induced salivary secretion (p<0.05, dose 1μg/kg; p<0.001, dose 3-30μg/kg), increased PGE content (p<0.01), stimulated iNOS activity (p<0.05). Ipsilateral glands of unilateral EP animals presented lower methacholine-induced salivary secretion (p<0.05, dose 3μg/kg; p<0.001, dose 10-30μg/kg), and higher PGE content than contralaterals (p<0.001). In turn, at 3 and 10μg/kg of methacholine, contralateral glands showed significantly lower secretion than control animals (p<0.001). Histological studies of glands revealed partial loss of secretor granular material and periductal oedema in the bilateral and unilateral EP groups as compared to controls. CONCLUSIONS As far as we know, the present results demonstrate for the first time that EP reduces methacholine-induced SMG salivary secretion.
Experimental Neurology | 2010
Valeria Rettori; Andrea De Laurentiis; Javier Fernández-Solari
Marihuana and alcohol consumption affect adversely reproduction by inhibiting the hypothalamic-pituitary-gonadal axis. The endocannabinoid system, present in the central nervous system and in peripheral tissues, participates in the regulation of hormones involved in the reproductive physiology such as luteinizing hormone, prolactin and oxytocin. This system is activated in response to pathophysiological conditions such as stress and inflammatory/infectious states as well as alcoholism and drug consumption acting as a negative modulator of reproductive function. The secretion of luteinizing hormone from the adenohypophysis is reduced, mainly through hypothalamic inhibitory action of cannabinoids and alcohol on luteinizing hormone releasing hormone release from its nervous terminals in the median eminence. This inhibitory effect is mediated, at least in part, by the activation of cannabinoid type 1 receptors. Cannabinoids also inhibit prolactin release from the lactotropes in the adenohypophysis acting locally and by increasing the release of hypothalamic dopamine mainly from tuberoinfundibular dopaminergic neurons in the external layer of the median eminence. On the contrary, ethanol stimulates prolactin release from the adenohypophysis as well as oxytocin from the neurohypophysis. Besides, endocannabinoids modulate oxytocin synthesis and release from the hypothalamic magnocellular neurons and neurohypophysis. In summary, all the results exposed in the present review suggest that there is interplay between the endocannabinoid system, hormones and neuropeptides in the control of reproduction and that this system mediates, at least in part, ethanol adverse effects on reproductive function.
Alcohol and Alcoholism | 2009
Juan Pablo Prestifilippo; Javier Fernández-Solari; Vanina A. Medina; Valeria Rettori; Juan C. Elverdin
AIM The aim of the present study was to determine whether the endocannabinoid system could be involved in the ethanol-induced inhibition of salivation in adult male Wistar rats. METHODS Salivary secretion induced by different concentrations of methacholine, a cholinergic agonist, and the endocannabinoid arachidonoyl ethanolamide (anandamide, AEA) production in the submandibular gland (SMG) were determined in rats after ethanol (3 g/kg) administration by gastric gavage. To study the participation of cannabinod receptors in ethanol action, we evaluated methacholine-induced salivary secretion after ethanol administration when CB1 or CB2 receptors were blocked by intra-SMG injections of their selective antagonists AM251 and AM630, respectively. Additionally, we evaluated the in vitro effect of ethanol (0.1 M) on SMG production of cAMP, alone or combined with AM251 or AM630. RESULTS Acute ethanol administration increased AEA production in SMG and also inhibited the methacholine-induced saliva secretion that was partially restored by intraglandular injection of AM251 or AM630. In addition, ethanol significantly reduced the forskolin-induced increase in cAMP content in SMG in vitro while treatment with AM251 blocked this response. CONCLUSION We conclude that the inhibitory effect produced by ethanol on submandibular gland salivary secretion is mediated, at least in part, by the endocannabinoid system.
Archives of Oral Biology | 2013
Antonela R. Terrizzi; Javier Fernández-Solari; Ching M. Lee; Clarisa Bozzini; Patricia Mandalunis; Juan C. Elverdin; María I. Conti; María P. Martínez
Previously reported studies from this laboratory revealed that rats chronically intoxicated with lead (Pb) under hypoxic conditions (HX) impaired growth parameters and induced damages on femoral and mandibular bones predisposing to fractures. We also described periodontal inflammatory processes under such experimental conditions. Periodontitis is characterised by inflammation of supporting tissues of the teeth that result in alveolar bone loss. The existence of populations living at high altitudes and exposed to lead contamination aimed us to establish the macroscopic, biochemical and histological parameters consistent with a periodontal disease in the same rat model with or without experimental periodontitis (EP). Sixty female rats were divided into: Control; Pb (1000ppm of lead acetate in drinking water); HX (506mbar) and PbHX (both treatments simultaneously). EP was induced by placing ligatures around the molars of half of the rats during the 14 days previous to the autopsy. Hemi-mandibles were extracted to evaluate bone loss by histomorphometrical techniques. TNFα plasmatic concentration was greater (p<0.01) in Pb and HX animals. TBA-RS content was significantly higher in gums of rats with or without EP only by means of Pb. The SMG PGE2 content increased by Pb or HX was higher in PbHX rats (p<0.01). Pb and HX increased EP induced alveolar bone loss, while Pb showed spontaneous bone loss also. In conclusion, these results show that lead intoxication under hypoxic environment enhanced not only alveolar bone loss but also systemic and oral tissues inflammatory parameters, which could aggravate the physiopathological alterations produced by periodontal disease.
Archives of Oral Biology | 2010
Javier Fernández-Solari; Juan Pablo Prestifilippo; Cesar A. Ossola; Valeria Rettori; Juan C. Elverdin
OBJECTIVE The aim of the present paper was to assess whether lipopolysaccharide (LPS)-induced inhibition of salivary secretion involves the activation of the endocannabinoid system and the participation of tumor necrosis factor (TNF)alpha in the submandibular gland. DESIGN Pharmacological approaches were performed by using CB1 and/or CB2 cannabinoid receptor antagonists, AM251 and AM630, respectively, injected into the submandibular gland, to study the participation of the endocannabinoid system in LPS inhibitory effects on metacholine-induced salivary secretion. To assess the participation of TNFalpha on LPS inhibitory effects, salivary secretion was studied in LPS treated rats after the intraglandular injection of etanercept, a soluble form of TNF receptor which blocks TNFalpha action. Finally, to evaluate the possible interplay between endocannabinoids and TNFalpha on the submandibular gland function reduced during LPS challenge, the salivary secretion was studied after the intraglandular injection of this cytokine alone or concomitantly with AM251 and AM630. RESULTS AM251 and AM630, injected separately or concomitantly, partially prevented LPS-induced inhibition of salivation. Also, anandamide synthase activity was increased in submandibular glands extracted from rats 3h after LPS injection, suggesting that the endocannabinoid system was activated in response to this challenge. On the other hand, etanercept, prevented the inhibitory effect of LPS on salivary secretion and moreover, TNFalpha injected intraglandularly inhibited salivary secretion, being this effect prevented by AM251 and AM630 injected concomitantly. CONCLUSION The present results demonstrate the participation of the endocannabinoid system and TNFalpha on salivary responses during systemic inflammation induced by LPS.