Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javier Ferreira is active.

Publication


Featured researches published by Javier Ferreira.


Physiological Measurement | 2008

An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications

Fernando Seoane; Javier Ferreira; Juan José Sanchéz; Ramon Bragós

The increasing number of applications of electrical bioimpedance measurements in biomedical practice, together with continuous advances in textile technology, has encouraged several researchers to make the first attempts to develop portable, even wearable, electrical bioimpedance measurement systems. The main target of these systems is personal and home monitoring. Analog Devices has made available AD5933, a new system-on-chip fully integrated electrical impedance spectrometer, which might allow the implementation of minimum-size instrumentation for electrical bioimpedance measurements. However, AD5933 as such is not suitable for most applications of electrical bioimpedance. In this work, we present a relatively simple analog front-end that adapts AD5933 to a four-electrode strategy, allowing its use in biomedical applications for the first time. The resulting impedance measurements exhibit a very good performance in aspects like load dynamic range and accuracy. This type of minimum-size, system-on-chip-based bioimpedance measurement system would lead researchers to develop and implement light and wearable electrical bioimpedance systems for home and personal health monitoring applications, a new and huge niche for medical technology development.


international conference of the ieee engineering in medicine and biology society | 2011

AD5933-based electrical bioimpedance spectrometer. Towards textile-enabled applications

Javier Ferreira; Fernando Seoane; Kaj Lindecrantz

Advances on System-On-Chip and Textile technology allows the development of Textile-enabled measurement instrumentation. Textile Electrodes (Textrodes) have been proven reliable for performing Electrical Bioimpedance Spectroscopy (EBIS) measurements, and the availability of a integrated circuit impedance spectrometer, the AD5933, has allowed the implementation of small size EBIS spectrometers. In this work an AD5933-based spectrometer has been implemented, and its performance on 2R1C circuits and for tetrapolar total right side EBIS measurements has been compared against the commercially available spectrometer SFB7. The study has been focused on the working upper frequency range and the estimation of the Cole parameters required for assessment of body fluid distribution: R0 and R∞. The results indicate that AD5933-based spectrometer implemented in this work can perform accurate impedance measurements well above the upper limits recommended in the datasheet. The AD5933-EBIS presents a good performance compared with the SFB7 on the 2R1C circuit and the total right side measurements, showing a smaller error in the resistance spectrum and small deviation error in the reactance when measuring over 270 kHz. The comparison on the Cole parameters estimation obtained with the SFB7 and the AD5933-based spectrometer exhibit a difference below 1% for the estimation of R0 and R∞. Consequently the overall measurement performance shown by the implemented AD5933-based spectrometer suggests its feasible use for EBIS measurements using dry Textrodes. This is of special relevance for the proliferation of EBI-based personalized health monitoring systems for patients that require to monitor the distribution of body fluids, like in dialysis.


international conference electrical bioimpedance | 2010

AD5933-based spectrometer for electrical bioimpedance applications

Javier Ferreira; Fernando Seoane; Antonio Ansede; Ramon Bragós

To build an Electrical Bioimpedance (EBI) spectrometer using the Impedance Measurement System-On-Chip AD5933 together with a 4-Electrode Analog Front End (4E-AFE) has been proven practicable. Such ...


Sensors | 2013

Sensorized Garments and Textrode-Enabled Measurement Instrumentation for Ambulatory Assessment of the Autonomic Nervous System Response in the ATREC Project

Fernando Seoane; Javier Ferreira; Lorena Álvarez; Ruben Buendia; David Ayllón; Cosme Llerena; Roberto Gil-Pita

Advances in textile materials, technology and miniaturization of electronics for measurement instrumentation has boosted the development of wearable measurement systems. In several projects sensorized garments and non-invasive instrumentation have been integrated to assess on emotional, cognitive responses as well as physical arousal and status of mental stress through the study of the autonomous nervous system. Assessing the mental state of workers under stressful conditions is critical to identify which workers are in the proper state of mind and which are not ready to undertake a mission, which might consequently risk their own life and the lives of others. The project Assessment in Real Time of the Stress in Combatants (ATREC) aims to enable real time assessment of mental stress of the Spanish Armed Forces during military activities using a wearable measurement system containing sensorized garments and textile-enabled non-invasive instrumentation. This work describes the multiparametric sensorized garments and measurement instrumentation implemented in the first phase of the project required to evaluate physiological indicators and recording candidates that can be useful for detection of mental stress. For such purpose different sensorized garments have been constructed: a textrode chest-strap system with six repositionable textrodes, a sensorized glove and an upper-arm strap. The implemented textile-enabled instrumentation contains one skin galvanometer, two temperature sensors for skin and environmental temperature and an impedance pneumographer containing a 1-channel ECG amplifier to record cardiogenic biopotentials. With such combinations of garments and non-invasive measurement devices, a multiparametric wearable measurement system has been implemented able to record the following physiological parameters: heart and respiration rate, skin galvanic response, environmental and peripheral temperature. To ensure the proper functioning of the implemented garments and devices the full series of 12 sets have been functionally tested recording cardiogenic biopotential, thoracic impedance, galvanic skin response and temperature values. The experimental results indicate that the implemented wearable measurement systems operate according to the specifications and are ready to be used for mental stress experiments, which will be executed in the coming phases of the project with dozens of healthy volunteers.


Sensors | 2015

Assessment of Mental, Emotional and Physical Stress through Analysis of Physiological Signals Using Smartphones

Inma Mohino-Herranz; Roberto Gil-Pita; Javier Ferreira; Manuel Rosa-Zurera; Fernando Seoane

Determining the stress level of a subject in real time could be of special interest in certain professional activities to allow the monitoring of soldiers, pilots, emergency personnel and other professionals responsible for human lives. Assessment of current mental fitness for executing a task at hand might avoid unnecessary risks. To obtain this knowledge, two physiological measurements were recorded in this work using customized non-invasive wearable instrumentation that measures electrocardiogram (ECG) and thoracic electrical bioimpedance (TEB) signals. The relevant information from each measurement is extracted via evaluation of a reduced set of selected features. These features are primarily obtained from filtered and processed versions of the raw time measurements with calculations of certain statistical and descriptive parameters. Selection of the reduced set of features was performed using genetic algorithms, thus constraining the computational cost of the real-time implementation. Different classification approaches have been studied, but neural networks were chosen for this investigation because they represent a good tradeoff between the intelligence of the solution and computational complexity. Three different application scenarios were considered. In the first scenario, the proposed system is capable of distinguishing among different types of activity with a 21.2% probability error, for activities coded as neutral, emotional, mental and physical. In the second scenario, the proposed solution distinguishes among the three different emotional states of neutral, sadness and disgust, with a probability error of 4.8%. In the third scenario, the system is able to distinguish between low mental load and mental overload with a probability error of 32.3%. The computational cost was calculated, and the solution was implemented in commercially available Android-based smartphones. The results indicate that execution of such a monitoring solution is negligible compared to the nominal computational load of current smartphones.


Journal of Sensors | 2015

Utilizing Smart Textiles-Enabled Sensorized Toy and Playful Interactions for Assessment of Psychomotor Development on Children

Mario Vega-Barbas; Iván Pau; Javier Ferreira; Evelyn Lebis; Fernando Seoane

Utilizing Smart Textiles-Enabled Sensorized Toy and Playful Interactions for Assessment of Psychomotor Development on Children


international conference of the ieee engineering in medicine and biology society | 2010

Textile electrode straps for wrist-to-ankle bioimpedance measurements for Body Composition Analysis. Initial validation & experimental results

Juan Carlos Marquez; Javier Ferreira; Fernando Seoane; Ruben Buendia; Kaj Lindecrantz

Electrical Bioimpedance (EBI) is one of the non-invasive monitoring technologies that could benefit from the emerging textile based measurement systems. If reliable and reproducible EBI measurements could be done with textile electrodes, that would facilitate the utilization of EBI-based personalized healthcare monitoring applications. In this work the performance of a custom-made dry-textile electrode prototype is tested. Four-electrodes ankle-to-wrist EBI measurements have been taken on healthy subjects with the Impedimed spectrometer SFB7 in the frequency range 5 kHz to 1 MHz. The EBI spectroscopy measurements taken with dry electrodes were analyzed via the Cole and Body Composition Analysis (BCA) parameters, which were compared with EBI measurements obtained with standard electrolytic electrodes. The analysis of the obtained results indicate that even when dry textile electrodes may be used for EBI spectroscopy measurements, the measurements present remarkable differences that influence in the Cole parameter estimation process and in the final production of the BCA parameters. These initial results indicate that more research work must be done to in order to obtain a textile-based electrode that ensures reliable and reproducible EBI spectroscopy measurements.


international conference of the ieee engineering in medicine and biology society | 2013

Portable bioimpedance monitor evaluation for continuous impedance measurements. Towards wearable plethysmography applications

Javier Ferreira; Fernando Seoane; Kaj Lindecrantz

Personalised Health Systems (PHS) that could benefit the life quality of the patients as well as decreasing the health care costs for society among other factors are arisen. The purpose of this paper is to study the capabilities of the System-on-Chip Impedance Network Analyser AD5933 performing high speed single frequency continuous bioimpedance measurements. From a theoretical analysis, the minimum continuous impedance estimation time was determined, and the AD5933 with a custom 4-Electrode Analog Front-End (AFE) was used to experimentally determine the maximum continuous impedance estimation frequency as well as the system impedance estimation error when measuring a 2R1C electrical circuit model. Transthoracic Electrical Bioimpedance (TEB) measurements in a healthy subject were obtained using 3M gel electrodes in a tetrapolar lateral spot electrode configuration. The obtained TEB raw signal was filtered in MATLAB to obtain the respiration and cardiogenic signals, and from the cardiogenic signal the impedance derivative signal (dZ/dt) was also calculated. The results have shown that the maximum continuous impedance estimation rate was approximately 550 measurements per second with a magnitude estimation error below 1% on 2R1C-parallel bridge measurements. The displayed respiration and cardiac signals exhibited good performance, and they could be used to obtain valuable information in some plethysmography monitoring applications. The obtained results suggest that the AD5933-based monitor could be used for the implementation of a portable and wearable Bioimpedance plethysmograph that could be used in applications such as Impedance Cardiography. These results combined with the research done in functional garments and textile electrodes might enable the implementation of PHS applications in a relatively short time from now.


15th International Conference on Electrical Bio-Impedance, ICEBI 2013 and 14th Conference on Electrical Impedance Tomography, EIT 2013, 22 April 2013 through 25 April 2013, Heilbad Heiligenstadt | 2013

Bioimpedance-Based Wearable Measurement Instrumentation for Studying the Autonomic Nerve System Response to Stressful Working Conditions

Javier Ferreira; Lorena Álvarez; Ruben Buendia; David Ayllón; Cosme Llerena; Roberto Gil-Pita; Fernando Seoane

The assessment of mental stress on workers under hard and stressful conditions is critical to identify which workers are not ready to undertake a mission that might put in risk their own life and the life of others. The ATREC project aims to enable Real Time Assessment of Mental Stress of the Spanish Armed Forces during military activities. Integrating sensors with garments and using wearable measurement devices, the following physiological measurements were recorded: heart and respiration rate, skin galvanic response as well as peripheral temperature. The measuring garments are the following: a sensorized glove, an upper-arm strap and a repositionable textrode chest strap system with 6 textrodes. The implemented textile-enabled instrumentation contains: one skin galvanometer, two temperature sensors, for skin and environmental, and an Impedance Cardiographer/Pneumographer containing a 1 channel ECG amplifier to record cardiogenic biopotentials. The implemented wearable systems operated accordingly to the specifications and are ready to be used for the mental stress experiments that will be executed in the coming phases of the project in healthy volunteers.


International Conference in Healthcare, Hygiene Textiles and Clothing, Coimbatore, India, July 2010 | 2011

The Challenge of the Skin-Electrode Contact in Textile-enabled Electrical Bioimpedance, Measurements for Personalized Healthcare Monitoring Applications

Fernando Seoane Martínez; Juan Carlos Marquez; Javier Ferreira; Ruben Buendia; Kaj Lindecrantz

The Challenge of the Skin-Electrode Contact in Textile-enabled Electrical Bioimpedance Measurements for Personalized Healthcare Monitoting Application

Collaboration


Dive into the Javier Ferreira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaj Lindecrantz

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Carlos Marquez

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iván Pau

Technical University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge