Javier Girardini
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Javier Girardini.
Journal of Clinical Microbiology | 2003
Andrea B. J. Bracca; María Elena Tosello; Javier Girardini; Susana L. Amigot; Carlos A. Gomez; Esteban Serra
ABSTRACT We developed a seminested PCR for the diagnosis of histoplasmosis that amplifies a portion of the Histoplasma capsulatum H antigen gene. This assay is highly sensitive and specific, being able to detect genomic material corresponding to less than 10 yeast cells without cross-reaction against other bacterial or fungal pathogens.
Molecular and Biochemical Parasitology | 2002
Javier Girardini; Colette Dissous; Esteban Serra
Ferredoxin NADP(H) oxidoreductases (FNR) are flavoenzymes that catalyze the electron transfer between NADP(H) and a wide range of compounds including ferredoxins and bacterial flavodoxins. FNRs are classified into two major groups: plant- and vertebrate-type. Plant-type FNRs are implicated in photosynthesis and nitrogen fixation in plastids and photosynthetic bacteria, and were recently implicated in cell protection against reactive oxygen species (ROS). Vertebrate-type FNRs are mitochondrial enzymes implicated in steroid hormone biosynthesis in mammals and in Fe(+) uptake and metabolism in yeasts. We have cloned and sequenced a cDNA coding for the vertebrate-type Schistosoma mansoni FNR. Gel diaphorase activity and western blot assays demonstrated that SmFNR represented the major diaphorase activity of adult worms. An active recombinant SmFNR was expressed in Escherichia coli that made the bacteria tolerant to oxygen peroxide, cumene hydroperoxide and the superoxide-generating herbicide, methyl viologen (MV).
Pharmacological Research | 2014
Javier Girardini; Carolina Marotta; Giannino Del Sal
In the last decade intensive research has confirmed the long standing hypothesis that some p53 point mutants acquire novel activities able to cooperate with oncogenic mechanisms. Particular attention has attracted the ability of several such mutants to actively promote the development of aggressive and metastatic tumors in vivo. This knowledge opens a new dimension on rational therapy design, suggesting novel strategies based on pharmacological manipulation of those neomorphic activities. P53 point mutants have several characteristics that make them attractive targets for anti-cancer therapies. Remarkably, mutant p53 has been found predominantly in tumor cells and may act pleiotropically by interfering with a variety of cellular processes. Therefore, drugs targeting mutant p53 may selectively affect tumor cells, inactivating simultaneously several mechanisms of tumor promotion. Moreover, the high frequency of missense mutations on the p53 gene suggests that interfering with mutant p53 function may provide a valuable approach for the development of efficient therapies able to target a wide range of tumor types.
Sub-cellular biochemistry | 2014
Javier Girardini; Dawid Walerych; Giannino Del Sal
Following the initial findings suggesting a pro-oncogenic role for p53 point mutants, more than 30 years of research have unveiled the critical role exerted by these mutants in human cancer. A growing body of evidence, including mouse models and clinical data, has clearly demonstrated a connection between mutant p53 and the development of aggressive and metastatic tumors. Even if the molecular mechanisms underlying mutant p53 activities are still the object of intense scrutiny, it seems evident that full activation of its oncogenic role requires the functional interaction with other oncogenic alterations. p53 point mutants, with their pleiotropic effects, simultaneously activating several mechanisms of aggressiveness, are engaged in multiple cross-talk with a variety of other cancer-related processes, thus depicting a complex molecular landscape for the mutant p53 network. In this chapter revealing evidence illustrating different ways through which this cooperation may be achieved will be discussed. Considering the proposed role for mutant p53 as a driver of cancer aggressiveness, disarming mutant p53 function by uncoupling the cooperation with other oncogenic alterations, stands out as an exciting possibility for the development of novel anti-cancer therapies.
Journal of Organic Chemistry | 2018
Yi-hsuan Tsai; Carla Borini Etichetti; Carolina Di Benedetto; Javier Girardini; Felipe T. Martins; Rolando A. Spanevello; Alejandra G. Suárez; Ariel M. Sarotti
The design and synthesis of biomass-derived triazoles and the in vitro evaluation as potential anticancer agents are described. The discovery of base-catalyzed retro-aza-Michael//aza-Michael isomerizations allowed the exploration of the chemical space by affording novel types of triazoles, difficult to obtain otherwise. Following this strategy, 2,4-disubstituted 1,2,3-triazoles could be efficiently obtained from the corresponding 1,4-disubstituted analogues.
Scientific Reports | 2017
Evangelina Almada; Facundo M. Tonucci; Florencia Hidalgo; Anabela Ferretti; Solange Ibarra; Alejandro Pariani; Rodrigo Vena; Cristián Favre; Javier Girardini; Arlinet Kierbel; M. Cecilia Larocca
The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.
Scientific Reports | 2018
Aneley Montaner; Themis Taynah da Silva Santana; Timm Schroeder; Marcelo Einiker-Lamas; Javier Girardini; Marcos R. Costa; Claudia Banchio
Hitherto, the known mechanisms underpinning cell-fate specification act on neural progenitors, affecting their commitment to generate neuron or glial cells. Here, we show that particular phospholipids supplemented in the culture media modify the commitment of post-mitotic neural cells in vitro. Phosphatidylcholine (PtdCho)-enriched media enhances neuronal differentiation at the expense of astroglial and unspecified cells. Conversely, phosphatidylethanolamine (PtdEtn) enhances astroglial differentiation and accelerates astrocyte maturation. The ability of phospholipids to modify the fate of post-mitotic cells depends on its presence during a narrow time-window during cell differentiation and it is mediated by the selective activation of particular signaling pathways. While PtdCho-mediated effect on neuronal differentiation depends on cAMP-dependent kinase (PKA)/calcium responsive element binding protein (CREB), PtdEtn stimulates astrogliogenesis through the activation of the MEK/ERK signaling pathway. Collectively, our results provide an additional degree of plasticity in neural cell specification and further support the notion that cell differentiation is a reversible phenomenon. They also contribute to our understanding of neuronal and glial lineage specification in the central nervous system, opening up new avenues to retrieve neurogenic capacity in the brain.
FEBS Journal | 2002
Javier Girardini; Alejandro Amirante; Khalid Zemzoumi; Esteban Serra
Experimental Parasitology | 2010
Pamela Cribb; Luis Esteban; Andrea Trochine; Javier Girardini; Esteban Serra
Experimental Parasitology | 2005
Javier Girardini; Naji Khayath; Alejandro Amirante; Colette Dissous; Esteban Serra