Javier Igea
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Javier Igea.
Nature Communications | 2016
Andrew J. Helmstetter; Alexander S. T. Papadopulos; Javier Igea; Tom Van Dooren; Armand M. Leroi; Vincent Savolainen
Species richness is distributed unevenly across the tree of life and this may be influenced by the evolution of novel phenotypes that promote diversification. Viviparity has originated ∼150 times in vertebrates and is considered to be an adaptation to highly variable environments. Likewise, possessing an annual life cycle is common in plants and insects, where it enables the colonization of seasonal environments, but rare in vertebrates. The extent to which these reproductive life-history traits have enhanced diversification and their relative importance in the process remains unknown. We show that convergent evolution of viviparity causes bursts of diversification in fish. We built a phylogenetic tree for Cyprinodontiformes, an order in which both annualism and viviparity have arisen, and reveal that while both traits have evolved multiple times, only viviparity played a major role in shaping the patterns of diversity. These results demonstrate that changes in reproductive life-history strategy can stimulate diversification.
Evolution | 2015
Javier Igea; Diego Bogarín; Alexander S. T. Papadopulos; Vincent Savolainen
Speciation on islands, and particularly the divergence of species in situ, has long been debated. Here, we present one of the first, complete assessments of the geographic modes of speciation for the flora of a small oceanic island. Cocos Island (Costa Rica) is pristine; it is located 550 km off the Pacific coast of Central America. It harbors 189 native plant species, 33 of which are endemic. Using phylogenetic data from insular and mainland congeneric species, we show that all of the endemic species are derived from independent colonization events rather than in situ speciation. This is in sharp contrast to the results of a study carried out in a comparable system, Lord Howe Island (Australia), where as much as 8.2% of the plant species were the product of sympatric speciation. Differences in physiography and age between the islands may be responsible for the contrasting patterns of speciation observed. Importantly, comparing phylogenetic assessments of the modes of speciation with taxonomy‐based measures shows that widely used island biogeography approaches overestimate rates of in situ speciation.
Journal of Evolutionary Biology | 2016
Luke T. Dunning; H. Hipperson; William J. Baker; Roger K. Butlin; Céline Devaux; Ian Hutton; Javier Igea; Alexander S. T. Papadopulos; X. Quan; Carole M. Smadja; Colin Turnbull; Vincent Savolainen
Ecological speciation requires divergent selection, reproductive isolation and a genetic mechanism to link the two. We examined the role of gene expression and coding sequence evolution in this process using two species of Howea palms that have diverged sympatrically on Lord Howe Island, Australia. These palms are associated with distinct soil types and have displaced flowering times, representing an ideal candidate for ecological speciation. We generated large amounts of RNA‐Seq data from multiple individuals and tissue types collected on the island from each of the two species. We found that differentially expressed loci as well as those with divergent coding sequences between Howea species were associated with known ecological and phenotypic differences, including response to salinity, drought, pH and flowering time. From these loci, we identified potential ‘ecological speciation genes’ and further validate their effect on flowering time by knocking out orthologous loci in a model plant species. Finally, we put forward six plausible ecological speciation loci, providing support for the hypothesis that pleiotropy could help to overcome the antagonism between selection and recombination during speciation with gene flow.
PLOS Biology | 2017
Javier Igea; Eleanor Miller; Alexander S. T. Papadopulos; Andrew J. Tanentzap
Species diversity varies greatly across the different taxonomic groups that comprise the Tree of Life (ToL). This imbalance is particularly conspicuous within angiosperms, but is largely unexplained. Seed mass is one trait that may help clarify why some lineages diversify more than others because it confers adaptation to different environments, which can subsequently influence speciation and extinction. The rate at which seed mass changes across the angiosperm phylogeny may also be linked to diversification by increasing reproductive isolation and allowing access to novel ecological niches. However, the magnitude and direction of the association between seed mass and diversification has not been assessed across the angiosperm phylogeny. Here, we show that absolute seed size and the rate of change in seed size are both associated with variation in diversification rates. Based on the largest available angiosperm phylogenetic tree, we found that smaller-seeded plants had higher rates of diversification, possibly due to improved colonisation potential. The rate of phenotypic change in seed size was also strongly positively correlated with speciation rates, providing rare, large-scale evidence that rapid morphological change is associated with species divergence. Our study now reveals that variation in morphological traits and, importantly, the rate at which they evolve can contribute to explaining the extremely uneven distribution of diversity across the ToL.
Conservation Genetics | 2016
Marina Querejeta; Jorge González-Esteban; Asunción Gómez; Angel Fernández-González; Pere Aymerich; Joaquim Gosálbez; Lídia Escoda; Javier Igea; Jose Castresana
The Pyrenean desman (Galemys pyrenaicus) is a small semi-aquatic mammal endemic to the Iberian Peninsula. The species has recently experienced a strong decline and some of its populations are severely threatened with extinction. To help in the preservation of this species, it is critical to understand its genetic structure and main evolutionary units, as these may have specific local adaptations and could be of great conservation value. Sequencing reduced representation libraries (ddRAD) from 26 specimens selected from across its entire range, we obtained around 45,000 loci per specimen and 1185 single nucleotide polymorphisms. Heterozygosity varied substantially among individuals from different areas. Interestingly, specimens from the southeastern Pyrenees had some of the lowest proportions of heterozygous positions inferred from genome-wide data in mammals so far. In addition, we estimated a tree reflecting genomic divergence, performed a principal component analysis, and carried out a Bayesian analysis of the population structure. Combined evidence supported the existence of five distinct genomic clusters largely coincident with the main mountain ranges where the species occurs, with few specimens presenting relevant admixture levels. There was good correspondence between these populations and the mitochondrial lineages detected in a previous study, yet substantial differences in some areas demonstrate the importance of performing genomic analysis to reveal the whole population history. Although the analysis of further specimens is necessary to better characterize the distribution of the different evolutionary units, the distinctive geographical structure of this species revealed by the genomic data should be considered in future conservation plans.
BMC Evolutionary Biology | 2016
Dominic Swift; Luke T. Dunning; Javier Igea; Edward J. Brooks; Catherine S. Jones; Leslie R. Noble; Adam Ciezarek; Emily Humble; Vincent Savolainen
BackgroundAll vertebrates initially feed their offspring using yolk reserves. In some live-bearing species these yolk reserves may be supplemented with extra nutrition via a placenta. Sharks belonging to the Carcharhinidae family are all live-bearing, and with the exception of the tiger shark (Galeocerdo cuvier), develop placental connections after exhausting yolk reserves. Phylogenetic relationships suggest the lack of placenta in tiger sharks is due to secondary loss. This represents a dramatic shift in reproductive strategy, and is likely to have left a molecular footprint of positive selection within the genome.ResultsWe sequenced the transcriptome of the tiger shark and eight other live-bearing shark species. From this data we constructed a time-calibrated phylogenetic tree estimating the tiger shark lineage diverged from the placental carcharhinids approximately 94 million years ago. Along the tiger shark lineage, we identified five genes exhibiting a signature of positive selection. Four of these genes have functions likely associated with brain development (YWHAE and ARL6IP5) and sexual reproduction (VAMP4 and TCTEX1D2).ConclusionsOur results indicate the loss of placenta in tiger sharks may be associated with subsequent adaptive changes in brain development and sperm production.
bioRxiv | 2016
Javier Igea; Eleanor Miller; Alexander S. T. Papadopulos; Andrew J. Tanentzap
Species diversity varies greatly across the different taxonomic groups that comprise the Tree of Life (ToL). This imbalance is particularly conspicuous within angiosperms, but is largely unexplained. Seed mass is one trait that may help clarify why some lineages diversify more than others because it confers adaptation to different environments, which can subsequently influence speciation and extinction. The rate at which seed mass changes across the phylogeny may also be linked to diversification by increasing reproductive isolation and allowing access to novel ecological niches. However, the magnitude and direction of the association between seed mass and diversification has not been assessed across the angiosperm phylogeny. Here, we show that absolute seed size and the rate of change in seed size are both associated with variation in diversification rates. Based on the largest available angiosperm phylogenetic tree, we found that smaller-seeded plants had higher rates of diversification, possibly due to improved colonisation potential. The rate of phenotypic change in seed size was also strongly positively correlated with speciation rates, providing rare, large-scale evidence that rapid morphological change is associated with species divergence. Our study now reveals that variation in morphological traits and, importantly, the rate at which they evolve can contribute to explaining the extremely uneven distribution of diversity across the ToL.Species diversity varies greatly across the different taxonomic groups that comprise the Tree of Life (ToL). This imbalance is particularly conspicuous within angiosperms, but is largely unexplained. Seed mass is one factor that may help some lineages diversify more than others by influencing key life history traits, such as dispersal, colonisation, environmental tolerance and reproductive success. However, the extent and direction of these effects have not been assessed across the angiosperm ToL. Here, we show for the first time that absolute seed size and the rate of change in seed size are both associated with variation in diversification rates. Based on an unequalled phylogenetic tree that included 4105 angiosperm genera, we found that smaller-seeded plants had higher rates of diversification, possibly due to improved colonisation potential. The rate of phenotypic change in seed size was also strongly positively correlated with speciation rates, supporting emerging evidence that rapid morphological change is associated with species divergence. Our study now reveals that variation in morphological traits, as well as the rate at which traits evolve, contribute significantly to the extremely uneven distribution of diversity across the ToL.
PLOS ONE | 2014
Ana Rodríguez-Prieto; Javier Igea; Jose Castresana
One of the major challenges in the analysis of closely related species, speciation and phylogeography is the identification of variable sequence markers that allow the determination of genealogical relationships in multiple genomic regions using coalescent and species tree approaches. Rodent species represent nearly half of the mammalian diversity, but so far no systematic study has been carried out to detect suitable informative markers for this group. Here, we used a bioinformatic pipeline to extract intron sequences from rodent genomes available in databases and applied a series of filters that allowed the identification of 208 introns that adequately fulfilled several criteria for these studies. The main required characteristics of the introns were that they had the maximum possible mutation rates, that they were part of single-copy genes, that they had an appropriate sequence length for amplification, and that they were flanked by exons with suitable regions for primer design. In addition, in order to determine the validity of this approach, we chose ten of these introns for primer design and tested them in a panel of eleven rodent species belonging to different representative families. We show that all these introns can be amplified in the majority of species and that, overall, 79% of the amplifications worked with minimum optimization of the annealing temperature. In addition, we confirmed for a pair of sister species the relatively high level of sequence divergence of these introns. Therefore, we provide here a set of adequate intron markers that can be applied to different species of Rodentia for their use in studies that require significant sequence variability.
bioRxiv | 2018
Javier Igea; Andrew J. Tanentzap
Why is species diversity so unevenly distributed across different regions on Earth? Regional differences in biodiversity may stem from differences in rates of speciation and dispersal and colonization times, but these hypotheses have rarely been tested simultaneously at a global scale. Here we uncovered the routes that generated hotpots of mammal and bird biodiversity by analyzing the tempo and mode of diversification and dispersal within major biogeographic realms. Hotspots in tropical realms had higher rates of speciation whereas those in temperate realms received more immigrant species from their surrounding regions. We also found that hotspots had higher spatial complexity and energy availability, providing a link between the environment and macroevolutionary history. Our study highlights how assessing differences in macroevolutionary history can help to explain why biodiversity varies so much worldwide.
bioRxiv | 2018
Andrew J. Helmstetter; Tom Van Dooren; Alexander S. T. Papadopulos; Javier Igea; Armand M. Leroi; Vincent Savolainen
Reconstructions of evolutionary and historical biogeographic processes can improve our understanding of how species ssemblages developed and permit inference of ecological drivers affecting coexistence. We explore this approach in Austrolebias, a genus of annual fishes possessing a wide range of body sizes. Regional assemblages composed of different species with similar size distributions are found in four areas of eastern South America. Using phylogenetic trees, species distribution models and size data we show how trait evolution and historical biogeography have affected the composition of species assemblages. We extend age-range correlations to improve estimates of local historical biogeography. We find that size variation principally arose in a single area and infer that ecological interactions drove size divergence. This large-size lineage spread to two other areas. One of these assemblages was likely shaped by adaptation to a new environment, but this was not associated with additional size divergence. We found only weak evidence that environmental filtering has been important in the construction of the remaining assemblage with the smallest range of sizes. The repeated assemblage structures were the result of different evolutionary and historical processes. Our approach sheds light on how species assemblages were built when typical clustering approaches may fall short.