Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javier Plaza is active.

Publication


Featured researches published by Javier Plaza.


IEEE Transactions on Geoscience and Remote Sensing | 2004

A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data

Antonio Plaza; Pablo Martínez; Rosa M. Pérez; Javier Plaza

Linear spectral unmixing is a commonly accepted approach to mixed-pixel classification in hyperspectral imagery. This approach involves two steps. First, to find spectrally unique signatures of pure ground components, usually known as endmembers, and, second, to express mixed pixels as linear combinations of endmember materials. Over the past years, several algorithms have been developed for autonomous and supervised endmember extraction from hyperspectral data. Due to a lack of commonly accepted data and quantitative approaches to substantiate new algorithms, available methods have not been rigorously compared by using a unified scheme. In this paper, we present a comparative study of standard endmember extraction algorithms using a custom-designed quantitative and comparative framework that involves both the spectral and spatial information. The algorithms considered in this study represent substantially different design choices. A database formed by simulated and real hyperspectral data collected by the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) is used to investigate the impact of noise, mixture complexity, and use of radiance/reflectance data on algorithm performance. The results obtained indicate that endmember selection and subsequent mixed-pixel interpretation by a linear mixture model are more successful when methods combining spatial and spectral information are applied.


IEEE Transactions on Geoscience and Remote Sensing | 2002

Spatial/spectral endmember extraction by multidimensional morphological operations

Antonio Plaza; Pablo Martínez; Rosa M. Pérez; Javier Plaza

Spectral mixture analysis provides an efficient mechanism for the interpretation and classification of remotely sensed multidimensional imagery. It aims to identify a set of reference signatures (also known as endmembers) that can be used to model the reflectance spectrum at each pixel of the original image. Thus, the modeling is carried out as a linear combination of a finite number of ground components. Although spectral mixture models have proved to be appropriate for the purpose of large hyperspectral dataset subpixel analysis, few methods are available in the literature for the extraction of appropriate endmembers in spectral unmixing. Most approaches have been designed from a spectroscopic viewpoint and, thus, tend to neglect the existing spatial correlation between pixels. This paper presents a new automated method that performs unsupervised pixel purity determination and endmember extraction from multidimensional datasets; this is achieved by using both spatial and spectral information in a combined manner. The method is based on mathematical morphology, a classic image processing technique that can be applied to the spectral domain while being able to keep its spatial characteristics. The proposed methodology is evaluated through a specifically designed framework that uses both simulated and real hyperspectral data.


IEEE Transactions on Geoscience and Remote Sensing | 2005

Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations

Antonio Plaza; Pablo Martínez; Javier Plaza; Rosa M. Pérez

This work describes sequences of extended morphological transformations for filtering and classification of high-dimensional remotely sensed hyperspectral datasets. The proposed approaches are based on the generalization of concepts from mathematical morphology theory to multichannel imagery. A new vector organization scheme is described, and fundamental morphological vector operations are defined by extension. Extended morphological transformations, characterized by simultaneously considering the spatial and spectral information contained in hyperspectral datasets, are applied to agricultural and urban classification problems where efficacy in discriminating between subtly different ground covers is required. The methods are tested using real hyperspectral imagery collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory Airborne Visible-Infrared Imaging Spectrometer and the German Aerospace Agency Digital Airborne Imaging Spectrometer (DAIS 7915). Experimental results reveal that, by designing morphological filtering methods that take into account the complementary nature of spatial and spectral information in a simultaneous manner, it is possible to alleviate the problems related to each of them when taken separately.


Journal of Parallel and Distributed Computing | 2006

Commodity cluster-based parallel processing of hyperspectral imagery

Antonio Plaza; David Valencia; Javier Plaza; Pablo Martínez

The rapid development of space and computer technologies has made possible to store a large amount of remotely sensed image data, collected from heterogeneous sources. In particular, NASA is continuously gathering imagery data with hyperspectral Earth observing sensors such as the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) or the Hyperion imager aboard Earth Observing-1 (EO-1) spacecraft. The development of fast techniques for transforming the massive amount of collected data into scientific understanding is critical for space-based Earth science and planetary exploration. This paper describes commodity cluster-based parallel data analysis strategies for hyperspectral imagery, a new class of image data that comprises hundreds of spectral bands at different wavelength channels for the same area on the surface of the Earth. An unsupervised technique that integrates the spatial and spectral information in the image data using multi-channel morphological transformations is parallelized and compared to other available parallel algorithms. The codes portability, reusability and scalability are illustrated by using two high-performance parallel computing architectures: a distributed memory, multiple instruction multiple data (MIMD)-style multicomputer at European Center for Parallelism of Barcelona, and a Beowulf cluster at NASAs Goddard Space Flight Center. Experimental results suggest that Beowulf clusters are a source of computational power that is both accessible and applicable to obtaining results in valid response times in information extraction applications from hyperspectral imagery.


Pattern Recognition | 2004

A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles

Antonio Plaza; Pablo Martínez; Rosa M. Pérez; Javier Plaza

Abstract This paper presents a new approach to the analysis of hyperspectral images, a new class of image data that is mainly used in remote sensing applications. The method is based on the generalization of concepts from mathematical morphology to multi-channel imagery. A new vector organization scheme is described, and fundamental morphological vector operations are defined by extension. Theoretical definitions of extended morphological operations are used in the formal definition of the concept of extended morphological profile, which is used for multi-scale analysis of hyperspectral data. This approach is particularly well suited for the analysis of image scenes where most of the pixels collected by the sensor are characterized by their mixed nature, i.e. they are formed by a combination of multiple underlying responses produced by spectrally distinct materials. Experimental results demonstrate the applicability of the proposed technique in mixed pixel analysis of simulated and real hyperspectral data collected by the NASA/Jet Propulsion Laboratory Airborne Visible/Infrared Imaging Spectrometer and the DLR Digital Airborne (DAIS 7915) and Reflective Optics System Imaging Spectrometers. The proposed method works effectively in the presence of noise and low spatial resolution. A quantitative and comparative performance study with regards to other standard hyperspectral analysis methodologies reveals that the combined utilization of spatial and spectral information in the proposed technique produces classification results which are superior to those found by using the spectral information alone.


IEEE Signal Processing Magazine | 2011

Parallel Hyperspectral Image and Signal Processing [Applications Corner]

Antonio Plaza; Javier Plaza; Abel Paz; S. F. Sánchez

Remotely sensed hyperspectral imaging instruments are capable of collecting hundreds of images corresponding to different wave length channels for the same area on the surface of the Earth. For instance, NASA is continuously gathering high dimensional image data with instruments such as the Jet Propulsion Laboratorys Airborne Visible-Infrared Imaging Spectrometer (AVIRIS). This advanced sensor for Earth observation records the visible and near-infrared spectrum of the reflected light using more than 200 spectral bands, thus producing a stack of images in which each pixel (vector) is represented by a spectral signal that uniquely characterizes the underlying objects. The resulting data volume typically comprises several gigabytes per flight. In this article, we describe the state of the art in the devel opment and application of image and signal processing techniques for advanced information extraction from hyperspectral data. The article also describes new trends for efficient pro cessing of such data using parallel and distributed processing techniques in the context of time-critical applications.


Pattern Recognition | 2009

On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images

Javier Plaza; Antonio Plaza; Rosa M. Pérez; Pablo Martínez

In this work, neural network-based models involved in hyperspectral image spectra separation are considered. Focus is on how to select the most highly informative samples for effectively training the neural architecture. This issue is addressed here by several new algorithms for intelligent selection of training samples: (1) a border-training algorithm (BTA) which selects training samples located in the vicinity of the hyperplanes that can optimally separate the classes; (2) a mixed-signature algorithm (MSA) which selects the most spectrally mixed pixels in the hyperspectral data as training samples; and (3) a morphological-erosion algorithm (MEA) which incorporates spatial information (via mathematical morphology concepts) to select spectrally mixed training samples located in spatially homogeneous regions. These algorithms, along with other standard techniques based on orthogonal projections and a simple Maximin-distance algorithm, are used to train a multi-layer perceptron (MLP), selected in this work as a representative neural architecture for spectral mixture analysis. Experimental results are provided using both a database of nonlinear mixed spectra with absolute ground truth and a set of real hyperspectral images, collected at different altitudes by the digital airborne imaging spectrometer (DAIS 7915) and reflective optics system imaging spectrometer (ROSIS) operating simultaneously at multiple spatial resolutions.


signal processing systems | 2010

Improving the Performance of Hyperspectral Image and Signal Processing Algorithms Using Parallel, Distributed and Specialized Hardware-Based Systems

Antonio Plaza; Javier Plaza; Hugo Vegas

Advances in sensor technology are revolutionizing the way remotely sensed data is collected, managed and analyzed. The incorporation of latest-generation sensors to airborne and satellite platforms is currently producing a nearly continual stream of high-dimensional data, and this explosion in the amount of collected information has rapidly created new processing challenges. For instance, hyperspectral signal processing is a new technique in remote sensing that generates hundreds of spectral bands at different wavelength channels for the same area on the surface of the Earth. Many current and future applications of remote sensing in Earth science, space science, and soon in exploration science will require (near) real-time processing capabilities. In recent years, several efforts have been directed towards the incorporation of high-performance computing (HPC) systems and architectures in remote sensing missions. With the aim of providing an overview of current and new trends in parallel and distributed systems for remote sensing applications, this paper explores three HPC-based paradigms for efficient implementation of the Pixel Purity Index (PPI) algorithm, available from the popular Kodak’s Research Systems ENVI software package, as a representative case study for demonstration purposes. Several different parallel programming techniques are used to improve the performance of the PPI on a variety of parallel platforms, including a set of message passing interface (MPI)-based implementations on a massively parallel Beowulf cluster at NASA’s Goddard Space Flight Center in Maryland and on a variety of heterogeneous networks of workstations at University of Maryland; a Handel-C implementation of the algorithm on a Virtex-II field programmable gate array (FPGA); and a compute unified device architecture (CUDA)-based implementation on graphical processing units (GPUs) of NVidia. Combined, these parts deliver an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on the potential and emerging challenges of adapting HPC systems to remote sensing problems.


IEEE Geoscience and Remote Sensing Letters | 2006

Parallel implementation of endmember extraction algorithms from hyperspectral data

Antonio Plaza; David Valencia; Javier Plaza; Chein-I Chang

Automated extraction of spectral endmembers is a crucial task in hyperspectral data analysis. In most cases, the computational complexity of endmember extraction algorithms is very high, in particular, for very high-dimensional datasets. However, the intrinsic properties of available techniques are amenable to the design of parallel implementations. In this letter, we evaluate several parallel algorithms that represent three representative approaches to the problem of extracting endmembers. Two parallel algorithms have been selected to represent a first class of algorithms based on convex geometry concepts. In particular, we develop parallel implementations of approximate versions of the N-FINDR and pixel purity index algorithms, along with a parallel hybrid of both techniques. A second class is given by algorithms based on constrained error minimization and represented by a parallel version of the iterative error analysis algorithm. Finally, a parallel version of the automated morphological endmember extraction algorithm is also presented and discussed. This algorithm integrates the spatial and spectral information as opposed to the other discussed algorithms, a feature that introduces additional considerations for its parallelization. The proposed algorithms are quantitatively compared and assessed in terms of both endmember extraction accuracy and parallel efficiency, using standard AVIRIS hyperspectral datasets. Performance data are measured on Thunderhead, a parallel supercomputer at NASAs Goddard Space Flight Center


Archive | 2011

Recent Developments in Endmember Extraction and Spectral Unmixing

Antonio Plaza; Gabriel Martín; Javier Plaza; Maciel Zortea; S. F. Sánchez

Spectral unmixing is an important task for remotely sensed hyperspectral data exploitation. The spectral signatures collected in natural environments are invariably a mixture of the pure signatures of the various materials found within the spatial extent of the ground instantaneous field view of the imaging instrument. Spectral unmixing aims at inferring such pure spectral signatures, called endmembers, and the material fractions, called fractional abundances, at each pixel of the scene. In this chapter, we provide an overview of existing techniques for spectral unmixing and endmember extraction, with particular attention paid to recent advances in the field such as the incorporation of spatial information into the endmember searching process, or the use of nonlinear mixture models for fractional abundance characterization. In order to substantiate the methods presented throughout the chapter, highly representative hyperspectral scenes obtained by different imaging spectrometers are used to provide a quantitative and comparative algorithm assessment. To address the computational requirements introduced by hyperspectral imaging algorithms, the chapter also includes a parallel processing example in which the performance of a spectral unmixing chain (made up of spatial–spectral endmember extraction followed by linear spectral unmixing) is accelerated by taking advantage of a low-cost commodity graphics co-processor (GPU). Combined, these parts are intended to provide a snapshot of recent developments in endmember extraction and spectral unmixing, and also to offer a thoughtful perspective on future potentials and emerging challenges in designing and implementing efficient hyperspectral imaging algorithms.

Collaboration


Dive into the Javier Plaza's collaboration.

Top Co-Authors

Avatar

Antonio Plaza

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar

Pablo Martínez

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar

Rosa M. Pérez

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar

David Valencia

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar

Gabriel Martín

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar

Juan Mario Haut

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abel Paz

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar

Jun Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

S. F. Sánchez

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge