Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javier Ramón-Azcón is active.

Publication


Featured researches published by Javier Ramón-Azcón.


Lab on a Chip | 2012

Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells

Javier Ramón-Azcón; Samad Ahadian; Raquel Obregón; Gulden Camci-Unal; Serge Ostrovidov; Vahid Hosseini; Hirokazu Kaji; Kosuke Ino; Hitoshi Shiku; Ali Khademhosseini; Tomokazu Matsue

Establishing the 3D microscale organization of cells has numerous practical applications, such as in determining cell fate (e.g., proliferation, migration, differentiation, and apoptosis) and in making functional tissue constructs. One approach to spatially pattern cells is by dielectrophoresis (DEP). DEP has characteristics that are important for cell manipulation, such as high accuracy, speed, scalability, and the ability to handle both adherent and non-adherent cells. However, widespread application of this method is largely restricted because there is a limited number of suitable hydrogels for cell encapsulation. To date, polyethylene glycol-diacrylate (PEG-DA) and agarose have been used extensively for dielectric patterning of cells. In this study, we propose gelatin methacrylate (GelMA) as a promising hydrogel for use in cell dielectropatterning because of its biocompatibility and low viscosity. Compared to PEG hydrogels, GelMA hydrogels showed superior performance when making cell patterns for myoblast (C2C12) and endothelial (HUVEC) cells as well as in maintaining cell viability and growth. We also developed a simple and robust protocol for co-culture of these cells. Combined application of the GelMA hydrogels and the DEP technique is suitable for creating highly complex microscale tissues with important applications in fundamental cell biology and regenerative medicine in a rapid, accurate, and scalable manner.


Advanced Materials | 2013

Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers.

Javier Ramón-Azcón; Samad Ahadian; Mehdi Estili; Xiaobin Liang; Serge Ostrovidov; Hirokazu Kaji; Hitoshi Shiku; Murugan Ramalingam; Ken Nakajima; Yoshio Sakka; Ali Khademhosseini; Tomokazu Matsue

Dielectrophoresis is used to align carbon nanotubes (CNTs) within gelatin methacrylate (GelMA) hydrogels in a facile and rapid manner. Aligned GelMA-CNT hydrogels show higher electrical properties compared with pristine and randomly distributed CNTs in GelMA hydrogels. The muscle cells cultured on these materials demonstrate higher maturation compared with cells cultured on pristine and randomly distributed CNTs in GelMA hydrogels.


Scientific Reports | 2015

Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication

Samad Ahadian; Javier Ramón-Azcón; Mehdi Estili; Xiaobin Liang; Serge Ostrovidov; Hitoshi Shiku; Murugan Ramalingam; Ken Nakajima; Yoshio Sakka; Hojae Bae; Tomokazu Matsue; Ali Khademhosseini

Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.


Biosensors and Bioelectronics | 2008

An impedimetric immunosensor based on interdigitated microelectrodes (IDμE) for the determination of atrazine residues in food samples

Javier Ramón-Azcón; Enrique Valera; A. Rodriguez; Alejandro Barranco; Begoña Alfaro; Francisco Sánchez-Baeza; M.-Pilar Marco

A novel impedimetric immunosensor for atrazine detection has been developed. The immunosensor is based on an array of interdigitated micro-electrodes (IDmicroE) and immunoreagents specifically developed to detect this pesticide. Immunochemical determination of atrazine is possible without the use of any label. An atrazine-haptenized protein was covalently immobilized on the surface of the interdigitated mu-electrodes area (interdigits space) previously activated with (3-glycidoxypropyl)trimethoxysilane. Before, the gold electrodes were blocked using N-acetylcysteamine to prevent non-specific adsorptions. All biofunctionalization steps were characterized by chemical affinity methods and impedance spectroscopy. Immunosensors measures are made by exposing the sensor to solutions containing a mixture of the analyte and the specific antibody. With this configuration, the immunosensor detects atrazine with a limit of detection of 0.04 microg L(-1) without the use of any label. The potential of the immunosensor to analyze pesticide residues in complex sample matrices, such as red wine, has been evaluated. The results shown that after solid-phase extraction atrazine can be determined in this type of sample with a limit of detection of 0.19 microg L(-1), far below the Maximum Residue Level (MRL) established by EC for residues of this herbicide in wine.


Lab on a Chip | 2012

Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue

Samad Ahadian; Javier Ramón-Azcón; Serge Ostrovidov; Gulden Camci-Unal; Vahid Hosseini; Hirokazu Kaji; Kosuke Ino; Hitoshi Shiku; Ali Khademhosseini; Tomokazu Matsue

Engineered skeletal muscle tissues could be useful for applications in tissue engineering, drug screening, and bio-robotics. It is well-known that skeletal muscle cells are able to differentiate under electrical stimulation (ES), with an increase in myosin production, along with the formation of myofibers and contractile proteins. In this study, we describe the use of an interdigitated array of electrodes as a novel platform to electrically stimulate engineered muscle tissues. The resulting muscle myofibers were analyzed and quantified in terms of their myotube characteristics and gene expression. The engineered muscle tissues stimulated through the interdigitated array of electrodes demonstrated superior performance and maturation compared to the corresponding tissues stimulated through a conventional setup (i.e., through Pt wires in close proximity to the muscle tissue). In particular, the ES of muscle tissue (voltage 6 V, frequency 1 Hz and duration 10 ms for 1 day) through the interdigitated array of electrodes resulted in a higher degree of C2C12 myotube alignment (∼80%) as compared to ES using Pt wires (∼65%). In addition, higher amounts of C2C12 myotube coverage area, myotube length, muscle transcription factors and protein biomarkers were found for myotubes stimulated through the interdigitated array of electrodes compared to those stimulated using the Pt wires. Due to the wide array of potential applications of ES for two- and three-dimensional (2D and 3D) engineered tissues, the suggested platform could be employed for a variety of cell and tissue structures to more efficiently investigate their response to electrical fields.


Biosensors and Bioelectronics | 2008

Three-dimensional interdigitated electrode array as a transducer for label-free biosensors.

Andrey Bratov; Javier Ramón-Azcón; Natalia Abramova; A. Merlos; Javier Adrian; Francisco Sánchez-Baeza; Maria-Pilar Marco; Carlos Domínguez

A new transducer for biosensor applications has been developed based on a three-dimensional interdigitated electrode array (IDEA) with electrode digits separated by an insulating barrier. Binding of molecules to a chemically modified surface of the transducer induces important changes in conductivity between the electrodes. Three-dimensional sensor shows considerable improvement compared with a standard planar IDEA design. The potential of the developed device as a sensor transducer to detect immunochemical and enzymatic reactions, as well as DNA hybridization events is demonstrated. The immunosensor allows direct detection of the antibiotic sulfapyridine and shows the IC(50) parameter value of 5.6 microgL(-1) in a buffer. Immunochemical determination occurs under competitive configurations and without the use of any label. Each modified sensor is of a single use. Nevertheless, biochemical reagents can be easily cleaned off the sensor surface for its reuse. Layer-by-layer method of used to deposit polyethyleneimine and glucose oxidase showed that the sensor is also highly effective for detecting single and multilayered molecular assemblies.


Talanta | 2010

Rapid and simple immunosensing system for simultaneous detection of tumor markers based on negative-dielectrophoretic manipulation of microparticles

Hyun Jung Lee; Sang Hyun Lee; Tomoyuki Yasukawa; Javier Ramón-Azcón; Fumio Mizutani; Kosuke Ino; Hitoshi Shiku; Tomokazu Matsue

We report here a rapid, simple, and simultaneous immunosensing method for two tumor markers, alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA), by applying the negative-dielectrophoretic (n-DEP) manipulation of microparticles. Microparticles modified with different antibodies rapidly accumulated to designated areas of poly(dimethylsiloxane) (PDMS) fluidic channels modified with different antibodies within 1 min by n-DEP upon the application of AC voltage. The presence of specific antigens, AFP or CEA, permitted the irreversible capture of microparticles via the formation of immuno-complexes between the PDMS surface and the microparticles. Uncaptured microparticles redispersed after switching off the AC voltage. The fluorescent intensity from the irreversibly captured microparticles allowed us to determine the concentration of AFP and CEA in the sample. Neither the unreacted analytes nor the microparticles required separation steps, since we detected the fluorescent signals only from the microparticles captured on the PDMS surface. The detectable concentration range shifted to lower values when the amount of the antibody on the PDMS surface increased. The range for both AFP and CEA assays was 0.1-100 ng/mL, which was sufficient to cover the concentration required for the medical diagnoses. We simultaneously detected the concentrations of AFP and CEA by using a device, with two channels modified for different antibodies. Since n-DEP was used for the rapid manipulation of the microparticles toward the PDMS surface, the time required for the assay was substantially short; 1 min for forcing and 5 min for redispersion of the microparticles and sensing.


Biosensors and Bioelectronics | 2010

Competitive multi-immunosensing of pesticides based on the particle manipulation with negative dielectrophoresis

Javier Ramón-Azcón; Tomoyuki Yasukawa; Hyun Jung Lee; Tomokazu Matsue; Francisco Sánchez-Baeza; Maria-Pilar Marco; Fumio Mizutani

In this work, we have applied particle manipulation based on negative dielectrophoresis (n-DEP) to develop rapid and separation-free immunosensing systems. Two widely used pesticides, atrazine and bromopropylate, were used as target molecules to demonstrate competitive immunosensing based on the rapid manipulation of microparticles. A suspension of the fluorescence microparticles modified with a specific antibody was injected into the n-DEP device consisting of the interdigitated microarray (IDA) electrode and indium-tin-oxide (ITO) substrate immobilized by protein conjugation with antigen. The application of 2 MHz AC voltage (16 V peak-to-peak) to the IDA forced most of the particles to form a line pattern on the upper ITO over the gaps of IDA within 60s. In the absence of analytes, patterned microparticles were irreversibly captured on the ITO by the construction of immuno-complexes. When the microparticles bearing anti-atrazine IgG antibody were suspended in an analyte (atrazine) solution, irreversible capturing of microparticles on the ITO was inhibited because of the occupation of the binding sites of the antibodies with free-atrazine. As a result, the analyte molecules were re-dispersed from the ITO to disintegrate the line formation after turning off the voltage. We could discriminatively detect the fluorescence intensity of the captured microparticles at the designated areas from that of the uncaptured microparticles suspended in the solution. Thus, the separation steps usually required for conventional immunoassay are eliminated in the present procedure. A pre-incubation of microparticles for 3 min in an orange juice solution containing analyte allowed for the determination of the atrazine and bromopropylate concentrations with a limit of detection of 4 and 1.5 microg L(-1), respectively, providing sufficient detectability to achieve international regulations regarding pesticide residues in food samples. The assay was significantly accelerated by the rapid particle manipulation with n-DEP and totally accomplished within 5 min. We also demonstrated the possibility of the simultaneous determination of two pesticide residues by using the DEP devices with two channels modified with specific competitors for atrazine and bromopropylate.


Acta Biomaterialia | 2016

Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies

Samad Ahadian; Shukuyo Yamada; Javier Ramón-Azcón; Mehdi Estili; Xiaobin Liang; Ken Nakajima; Hitoshi Shiku; Ali Khademhosseini; Tomokazu Matsue

UNLABELLED Carbon nanotubes (CNTs) were aligned in gelatin methacryloyl (GelMA) hydrogels using dielectrophoresis approach. Mouse embryoid bodies (EBs) were cultured in the microwells fabricated on the aligned CNT-hydrogel scaffolds. The GelMA-dielectrophoretically aligned CNT hydrogels enhanced the cardiac differentiation of the EBs compared with the pure GelMA and GelMA-random CNT hydrogels. This result was confirmed by Troponin-T immunostaining, the expression of cardiac genes (i.e., Tnnt2, Nkx2-5, and Actc1), and beating analysis of the EBs. The effect on EB properties was significantly enhanced by applying an electrical pulse stimulation (frequency, 1Hz; voltage, 3V; duration, 10ms) to the EBs for two continuous days. Taken together, the fabricated hybrid hydrogel-aligned CNT scaffolds with tunable mechanical and electrical characteristics offer an efficient and controllable platform for electrically induced differentiation and stimulation of stem cells for potential tissue regeneration and cell therapy applications. STATEMENT OF SIGNIFICANCE Dielectrophoresis approach was used to rapidly align carbon nanotubes (CNTs) in gelatin methacryloyl (GelMA) hydrogels resulting in hybrid GelMA-CNT hydrogels with tunable and anisotropic electrical and mechanical properties. The GelMA-aligned CNT hydrogels may be used to apply accurate and controllable electrical pulses to cell and tissue constructs and thereby regulating their behavior and function. In this work, it was demonstrated that the GelMA hydrogels containing the aligned CNTs had superior performance in cardiac differentiation of stem cells upon applying electrical stimulation in contrast with control gels. Due to broad use of electrical stimulation in tissue engineering and stem cell differentiation, it is envisioned that the GelMA-aligned CNT hydrogels would find wide applications in tissue regeneration and stem cell therapy.


Biosensors and Bioelectronics | 2009

Detection of pesticide residues using an immunodevice based on negative dielectrophoresis.

Javier Ramón-Azcón; Ryouta Kunikata; F.-J. Sánchez; María Pilar Marco; Hitoshi Shiku; Tomoyuki Yasukawa; Tomokazu Matsue

The detection of atrazine using a novel optical immunosensing technique based on negative dielectrophoresis (n-DEP) in microfluidic channels is described. Atrazine is a toxic triazine herbicide within the most frequently used. Polystyrene microparticles (6 microm diameters) modified with bovine serum albumin conjugated with atrazine (atrazine-BSA) were manipulated and captured when subjected to intense n-DEP electric fields. Specifically, particles were trapped when AC voltages with amplitudes of 10 V(peak) and frequencies over 1 MHz were applied to the electrodes. The immunological reaction occurring on the particles for detecting atrazine is based on an indirect competitive assay using a secondary anti-mouse immunogloburin G (IgG) antibody labeled with fluorescein isothiocyanate. The microfluidic device, with three-dimensional microelectrodes, was fabricated comprising two caged areas, allowing two simultaneous measurements inside the same microfluidic channel. The performance of this n-DEP immunosensing technique was evaluated using wine samples. The immunodevice showed a limit of detection for atrazine in buffer samples of 0.11 microgL(-1) and in pre-treated wine samples of 6.8 microg L(-1); these detection limits are lower than the maximum residue level (MRL) established by the European Community for residues of this herbicide in wine (50 microg L(-1)). This methodology offers great promise for rapid, simple, cost effective, and on-site analysis of biological, foods and beverages, and environmental samples.

Collaboration


Dive into the Javier Ramón-Azcón's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Rodriguez

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Enrique Valera

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge