Javier Redondo-Muñoz
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Javier Redondo-Muñoz.
Blood | 2008
Javier Redondo-Muñoz; Estefanía Ugarte-Berzal; José A. García-Marco; Mercedes Hernández del Cerro; Philippe E. Van den Steen; Ghislain Opdenakker; María José Terol; Angeles García-Pardo
As B-cell chronic lymphocytic leukemia (B-CLL) progresses, malignant cells extravasate and infiltrate lymphoid tissues. Several molecules, including gelatinase B/MMP-9, contribute to these processes. Although mainly a secreted protease, some MMP-9 is present at the B-CLL cell surface and the function, mode of anchoring, and interactions of this MMP-9 are unknown. Here we show that anti-MMP-9 antibodies immunoprecipitated a 190-kDa CD44v isoform and alpha4beta1 integrin from B-CLL cells, but not from normal B cells. Function-blocking antibodies to alpha4beta1 or CD44, or transfection with specific siRNAs, decreased cell-associated proMMP-9 and increased the secreted form. B-CLL cells attached to and bound proMMP-9 and active MMP-9, and this was inhibited by blocking the expression or function of alpha4beta1 or CD44. The MMP-9 hemopexin domain was critical in these interactions. alpha4beta1 and 190-kDa CD44v (but not CD44H) formed a complex at the cell surface, since they both coimmunoprecipitated with anti-alpha4, anti-beta1, or anti-CD44 antibodies. Immunofluorescence analyses confirmed that alpha4beta1 and CD44v colocalized with MMP-9. Binding of proMMP-9 inhibited B-CLL cell migration, and this required MMP-9 proteolytic activity. Thus, we have identified alpha4beta1 and CD44v as a novel proMMP-9 cell surface docking complex and show that cell-associated MMP-9 may regulate B-CLL cell migration and arrest.
Cancer Cell | 2010
Javier Redondo-Muñoz; Estefanía Ugarte-Berzal; María José Terol; Philippe E. Van den Steen; Mercedes Hernández del Cerro; M Roderfeld; Elke Roeb; Ghislain Opdenakker; José A. García-Marco; Angeles García-Pardo
Matrix metalloproteinase-9 (MMP-9) is the major MMP produced by B-CLL cells and contributes to their tissue infiltration by degrading extracellular and membrane-anchored substrates. Here we describe a different function for MMP-9 in B-CLL, which involves the hemopexin domain rather than its catalytic function. Binding of soluble or immobilized (pro)MMP-9, a catalytically inactive proMMP-9 mutant, or the MMP-9 hemopexin domain to its docking receptors alpha4beta1 integrin and CD44v, induces an intracellular signaling pathway that prevents B-CLL apoptosis. This pathway is induced in all B-CLL cases, is active in B-CLL lymphoid tissues, and consists of Lyn activation, STAT3 phosphorylation, and Mcl-1 upregulation. Our results establish that MMP/receptor binding induces intracellular survival signals and highlight the role of (pro)MMP-9 in B-CLL pathogenesis.
Molecular and Cellular Biology | 2011
Amit Kumar; Javier Redondo-Muñoz; Vicente Pérez-García; Isabel Cortés; Mónica Chagoyen; Ana C. Carrera
ABSTRACT Class IA phosphoinositide 3-kinases (PI3Ks) are heterodimeric enzymes composed of a p85 regulatory and a p110 catalytic subunit that induce the formation of 3-polyphosphoinositides, which mediate cell survival, division, and migration. There are two ubiquitous PI3K isoforms p110α and p110β that have nonredundant functions in embryonic development and cell division. However, whereas p110α concentrates in the cytoplasm, p110β localizes to the nucleus and modulates nuclear processes such as DNA replication and repair. At present, the structural features that determine p110β nuclear localization remain unknown. We describe here that association with the p85β regulatory subunit controls p110β nuclear localization. We identified a nuclear localization signal (NLS) in p110β C2 domain that mediates its nuclear entry, as well as a nuclear export sequence (NES) in p85β. Deletion of p110β induced apoptosis, and complementation with the cytoplasmic C2-NLS p110β mutant was unable to restore cell survival. These studies show that p110β NLS and p85β NES regulate p85β/p110β nuclear localization, supporting the idea that nuclear, but not cytoplasmic, p110β controls cell survival.
Clinical Cancer Research | 2010
Javier Redondo-Muñoz; Elizabeth Escobar-Díaz; Mercedes Hernández del Cerro; Atanasio Pandiella; María José Terol; José A. García-Marco; Angeles García-Pardo
Purpose: Arsenic trioxide (ATO) induces B-cell chronic lymphocytic leukemia (B-CLL) cell apoptosis in vitro. We sought to study the mechanism involved in this effect and whether ATO is suitable for combination therapies with protein kinase inhibitors. Experimental Design: B-CLL cells were isolated from the peripheral blood of 28 patients. Cell viability studies with ATO alone or in combination with kinase inhibitors were done by flow cytometry, Western blotting, and immunofluorescence analyses. Results: After 48 hours, 3 μmol/L ATO induced apoptosis (average 75%) in all B-CLL samples studied and with minimal effect on normal peripheral blood lymphocytes. Apoptosis entailed Akt and NF-κB inactivation, XIAP downregulation, and PTEN upregulation, thus implying inhibition of the phosphoinositide 3-kinase (PI3K) survival pathway. Indeed, the combination of ATO and PI3K inhibitors increased the apoptotic effect of either agent alone. ATO also induced c-jun-NH2 terminal kinase (JNK) activation, and this was crucial and required for subsequent apoptotic events, as inhibiting JNK activity by either gene silencing or specific inhibitors prevented Akt and NF-κB inactivation, caspase activation, and mitochondrial damage. Moreover, JNK activation was the earliest response to ATO, preceding and determining reactive oxygen species production. Conclusions: We identified the mechanism involved in ATO action on B-CLL cells and show that the combination of low doses of ATO and PI3K inhibitors efficiently induces B-CLL cell death. ATO may therefore constitute an efficient treatment for B-CLL, particularly in combined therapies. Clin Cancer Res; 16(17); 4382–91. ©2010 AACR.
The Journal of Pathology | 2013
David García-Bernal; Javier Redondo-Muñoz; Ana Dios-Esponera; Raphael Chèvre; Elvira Bailón; Mercedes Garayoa; Nohemí Arellano-Sánchez; Norma C. Gutiérrez; Andrés Hidalgo; Angeles García-Pardo; Joaquin Teixidó
Myeloma cell adhesion dependent on α4β1 integrin is crucial for the progression of multiple myeloma (MM). The α4β1‐dependent myeloma cell adhesion is up‐regulated by the chemokine CXCL12, and pharmacological blockade of the CXCL12 receptor CXCR4 leads to defective myeloma cell homing to bone marrow (BM). Sphingosine‐1‐phosphate (S1P) regulates immune cell trafficking upon binding to G‐protein‐coupled receptors. Here we show that myeloma cells express S1P1, a receptor for S1P. We found that S1P up‐regulated the α4β1‐mediated myeloma cell adhesion and transendothelial migration stimulated by CXCL12. S1P promoted generation of high‐affinity α4β1 that efficiently bound the α4β1 ligand VCAM‐1, a finding that was associated with S1P‐triggered increase in talin‐β1 integrin association. Furthermore, S1P cooperated with CXCL12 for enhancement of α4β1‐dependent adhesion strengthening and spreading. CXCL12 and S1P activated the DOCK2‐Rac1 pathway, which was required for stimulation of myeloma cell adhesion involving α4β1. Moreover, in vivo analyses indicated that S1P contributes to optimizing the interactions of MM cells with the BM microvasculture and for their lodging inside the bone marrow. The regulation of α4β1‐dependent adhesion and migration of myeloma cells by CXCL12‐S1P combined activities might have important consequences for myeloma disease progression. Copyright
Blood | 2010
Estefanía Ugarte-Berzal; Javier Redondo-Muñoz; Pilar Eroles; Mercedes Hernández del Cerro; José A. García-Marco; María José Terol; Angeles García-Pardo
B-cell chronic lymphocytic leukemia (B-CLL) migration involves several molecules, including matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF). We have studied whether VEGF regulates MMP-9. VEGF significantly reduced MMP-9 protein expression in a dose-dependent manner, measured by gelatin zymography. Blocking the VEGFR2 receptor restored MMP-9 levels, implicating this receptor in the observed effect. Down-regulation of MMP-9 by VEGF resulted in significant inhibition of B-CLL cell migration through Matrigel or human umbilical vein endothelial cells, confirming the crucial role of MMP-9 in these processes. Reverse-transcription polymerase chain reaction analyses revealed that VEGF regulated MMP-9 at the transcriptional level. Indeed, VEGF induced STAT1 tyrosine phosphorylation, and this was blocked by inhibiting VEGFR2. STAT1 was responsible for MMP-9 down-regulation, as STAT1 gene silencing restored MMP-9 production and B-CLL cell migration in the presence of VEGF. Thus, the levels of VEGF and MMP-9 influence B-CLL cell expansion and both molecules could constitute therapeutic targets for this disease.
Cellular Signalling | 2013
Javier Rey-Barroso; Georgina P. Coló; Alberto Álvarez-Barrientos; Javier Redondo-Muñoz; Jose Maria Carvajal-Gonzalez; Sonia Mulero-Navarro; Angeles García-Pardo; Joaquin Teixidó; Pedro M. Fernández-Salguero
Recent studies have suggested a regulatory role for the dioxin receptor (AhR) in cell adhesion and migration. Following our previous work, we report here that the C-terminal Src kinase-binding protein (Cbp) signaling pathway controls β1 integrin activation and that this mechanism is AhR dependent. T-FGM AhR-/- fibroblasts displayed higher integrin β1 activation, revealed by the increased binding of the activation reporter 9EG7 anti-β1 mAb and of a soluble fibronectin fragment, as well as by enhanced talin-β1 association. AhR-/- fibroblasts also showed increased fibronectin secretion and impaired directional migration. Notably, interfering Cbp expression in AhR-/- fibroblasts reduced β1 integrin activation, improved cell migration and rescued wild-type cell morphology. Cbp over-expression in T-FGM AhR-/- cells enhanced the formation of inhibitory Csk-Cbp complexes which in turn reduced c-Src p-Tyr(416) activation and focal adhesion kinase (FAK) phosphorylation at the c-Src-responsive residues p-Tyr(576) and p-Tyr(577). The c-Src target and migration-related protein Cav1 was also hypophosphorylated at p-Tyr(14) in AhR-/- cells, and such effect was rescued by down-modulating Cbp levels. Thus, AhR regulates fibroblast migration by modulating β1 integrin activation via Cbp-dependent, Src-mediated signaling.
Nucleic Acids Research | 2016
Xiaohong Zhang; Peter C. Cook; Egor Zindy; Craig J. Williams; Thomas A. Jowitt; Charles H. Streuli; Andrew S. MacDonald; Javier Redondo-Muñoz
The mechanical properties of the cell nucleus change to allow cells to migrate, but how chromatin modifications contribute to nuclear deformability has not been defined. Here, we demonstrate that a major factor in this process involves epigenetic changes that underpin nuclear structure. We investigated the link between cell adhesion and epigenetic changes in T-cells, and demonstrate that T-cell adhesion to VCAM1 via α4β1 integrin drives histone H3 methylation (H3K9me2/3) through the methyltransferase G9a. In this process, active G9a is recruited to the nuclear envelope and interacts with lamin B1 during T-cell adhesion through α4β1 integrin. G9a activity not only reorganises the chromatin structure in T-cells, but also affects the stiffness and viscoelastic properties of the nucleus. Moreover, we further demonstrated that these epigenetic changes were linked to lymphocyte movement, as depletion or inhibition of G9a blocks T-cell migration in both 2D and 3D environments. Thus, our results identify a novel mechanism in T-cells by which α4β1 integrin signaling drives specific chromatin modifications, which alter the physical properties of the nucleus and thereby enable T-cell migration.
Molecular Biology of the Cell | 2012
Virginia Silió; Javier Redondo-Muñoz; Ana C. Carrera
The phosphoinositide 3-kinase (PI3K) pathway is mutated in approximately half of tumors; it is therefore important to define its functions. This study shows that PI3Kα activity regulates mitotic entry and spindle orientation; in contrast, PI3Kβ controls dynein/dynactin and Aurora B activation at kinetochores and, in turn, chromosome segregation.
Molecular and Cellular Biology | 2015
Javier Redondo-Muñoz; Vicente Pérez-García; María Josefa Rodríguez; José M. Valpuesta; Ana C. Carrera
ABSTRACT The nuclear envelope (NE) forms a barrier between the nucleus and the cytosol that preserves genomic integrity. The nuclear lamina and nuclear pore complexes (NPCs) are NE components that regulate nuclear events through interaction with other proteins and DNA. Defects in the nuclear lamina are associated with the development of laminopathies. As cells depleted of phosphoinositide 3-kinase beta (PI3Kβ) showed an aberrant nuclear morphology, we studied the contribution of PI3Kβ to maintenance of NE integrity. pik3cb depletion reduced the nuclear membrane tension, triggered formation of areas of lipid bilayer/lamina discontinuity, and impaired NPC assembly. We show that one mechanism for PI3Kβ regulation of NE/NPC integrity is its association with RCC1 (regulator of chromosome condensation 1), the activator of nuclear Ran GTPase. PI3Kβ controls RCC1 binding to chromatin and, in turn, Ran activation. These findings suggest that PI3Kβ regulates the nuclear envelope through upstream regulation of RCC1 and Ran.