Jay A. Blundon
St. Jude Children's Research Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jay A. Blundon.
Neuron | 2013
Pan-Yue Deng; Ziv Rotman; Jay A. Blundon; Yongcheol Cho; Jianmin Cui; Valeria Cavalli; Stanislav S. Zakharenko; Vitaly A. Klyachko
Loss of FMRP causes fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx, and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation independent and are mediated selectively by BK channels via interaction of FMRP with BK channels regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology.
The Journal of Neuroscience | 2009
Robert J. Richardson; Jay A. Blundon; Ildar T. Bayazitov; Stanislav S. Zakharenko
Despite being substantially outnumbered by intracortical inputs on thalamorecipient neurons, thalamocortical projections efficiently deliver acoustic information to the auditory cortex. We hypothesized that thalamic projections may achieve effectiveness by forming synapses at optimal locations on dendritic trees of cortical neurons. Using two-photon calcium imaging in dendritic spines, we constructed maps of active thalamic and intracortical inputs on dendritic trees of thalamorecipient cortical neurons in mouse thalamocortical slices. These maps revealed that thalamic projections synapse preferentially on stubby dendritic spines within 100 μm of the soma, whereas the locations and morphology of spines that receive intracortical projections have a less-defined pattern. Using two-photon photolysis of caged glutamate, we found that activation of stubby dendritic spines located perisomatically generated larger postsynaptic potentials in the soma of thalamorecipient neurons than did activation of remote dendritic spines or spines of other morphological types. These results suggest a novel mechanism of reliability of thalamic projections: the positioning of crucial afferent inputs at optimal synaptic locations.
The Neuroscientist | 2008
Jay A. Blundon; Stanislav S. Zakharenko
The formation of memories relies in part on plastic changes at synapses between neurons. Although the mechanisms of synaptic plasticity have been studied extensively over several decades, many aspects of this process remain controversial. The cellular locus of expression of long-term potentiation (LTP), a major form of synaptic plasticity, is one of the most important unresolved phenomena. In this article, some recent advances in this area made possible by the development of new imaging tools are summarized. These studies have demonstrated that LTP is compound in nature and consists of both presynaptic and postsynaptic components. Some features of presynaptic and postsynaptic changes during compound LTP are also reviewed.
Science | 2014
Sungkun Chun; Joby J. Westmoreland; Ildar T. Bayazitov; Donnie Eddins; Amar K. Pani; Richard J. Smeyne; Jing Yu; Jay A. Blundon; Stanislav S. Zakharenko
Genes, synapses, and hallucinations In a schizophrenia mouse model, Chun et al. found that an abnormal increase of dopamine D2 receptors in the brains thalamic nuclei caused thalamocortical synapse deficits owing to reduced glutamate release. Antipsychotic agents or a dopamine receptor antagonist reversed this down-regulation. The defect was associated with the loss of a component of the microRNA processing machinery encoded by the dgcr8 gene. Science, this issue p. 1178 In mice, dopamine D2 receptor up-regulation in the thalamus is responsible for auditory hallucinations. Auditory hallucinations in schizophrenia are alleviated by antipsychotic agents that inhibit D2 dopamine receptors (Drd2s). The defective neural circuits and mechanisms of their sensitivity to antipsychotics are unknown. We identified a specific disruption of synaptic transmission at thalamocortical glutamatergic projections in the auditory cortex in murine models of schizophrenia-associated 22q11 deletion syndrome (22q11DS). This deficit is caused by an aberrant elevation of Drd2 in the thalamus, which renders 22q11DS thalamocortical projections sensitive to antipsychotics and causes a deficient acoustic startle response similar to that observed in schizophrenic patients. Haploinsufficiency of the microRNA-processing gene Dgcr8 is responsible for the Drd2 elevation and hypersensitivity of auditory thalamocortical projections to antipsychotics. This suggests that Dgcr8-microRNA-Drd2–dependent thalamocortical disruption is a pathogenic event underlying schizophrenia-associated psychosis.
The Journal of Neuroscience | 2013
Sungkun Chun; Ildar T. Bayazitov; Jay A. Blundon; Stanislav S. Zakharenko
Cortical maps in sensory cortices are plastic, changing in response to sensory experience. The cellular site of such plasticity is currently debated. Thalamocortical (TC) projections deliver sensory information to sensory cortices. TC synapses are currently dismissed as a locus of cortical map plasticity because TC synaptic plasticity is thought to be limited to neonates, whereas cortical map plasticity can be induced in both neonates and adults. However, in the auditory cortex (ACx) of adults, cortical map plasticity can be induced if animals attend to a sound or receive sounds paired with activation of cholinergic inputs from the nucleus basalis. We now show that, in the ACx, long-term potentiation (LTP), a major form of synaptic plasticity, is expressed at TC synapses in both young and mature mice but becomes gated with age. Using single-cell electrophysiology, two-photon glutamate uncaging, and optogenetics in TC slices containing the auditory thalamus and ACx, we show that TC LTP is expressed postsynaptically and depends on group I metabotropic glutamate receptors. TC LTP in mature ACx can be unmasked by cortical disinhibition combined with activation of cholinergic inputs from the nucleus basalis. Cholinergic inputs passing through the thalamic radiation activate M1 muscarinic receptors on TC projections and sustain glutamate release at TC synapses via negative regulation of presynaptic adenosine signaling through A1 adenosine receptors. These data indicate that TC LTP in the ACx persists throughout life and therefore can potentially contribute to experience-dependent cortical map plasticity in the ACx in both young and adult animals.
The Journal of Neuroscience | 2011
Jay A. Blundon; Ildar T. Bayazitov; Stanislav S. Zakharenko
Thalamocortical (TC) projections provide the major pathway for ascending sensory information to the mammalian neocortex. Arrays of these projections form synaptic inputs on thalamorecipient neurons, thus contributing to the formation of receptive fields (RFs) in sensory cortices. Experience-dependent plasticity of RFs persists throughout an organisms life span but in adults requires activation of cholinergic inputs to the cortex. In contrast, synaptic plasticity at TC projections is limited to the early postnatal period. This disconnect led to the widespread belief that TC synapses are the principal site of RF plasticity only in neonatal sensory cortices, but that they lose this plasticity upon maturation. Here, we tested an alternative hypothesis that mature TC projections do not lose synaptic plasticity but rather acquire gating mechanisms that prevent the induction of synaptic plasticity. Using whole-cell recordings and direct measures of postsynaptic and presynaptic activity (two-photon glutamate uncaging and two-photon imaging of the FM 1-43 assay, respectively) at individual synapses in acute mouse brain slices that contain the auditory thalamus and cortex, we determined that long-term depression (LTD) persists at mature TC synapses but is gated presynaptically. Cholinergic activation releases presynaptic gating through M1 muscarinic receptors that downregulate adenosine inhibition of neurotransmitter release acting through A1 adenosine receptors. Once presynaptic gating is released, mature TC synapses can express LTD postsynaptically through group I metabotropic glutamate receptors. These results indicate that synaptic plasticity at TC synapses is preserved throughout the life span and, therefore, may be a cellular substrate of RF plasticity in both neonate and mature animals.
Molecular and Cellular Biology | 2011
Peng Wei; Jay A. Blundon; Yongqi Rong; Stanislav S. Zakharenko; James I. Morgan
ABSTRACT PEP-19/PCP4 maps within the Down syndrome critical region and encodes a small, predominantly neuronal, IQ motif protein. Pep-19 binds calmodulin and inhibits calmodulin-dependent signaling, which is critical for synaptic function, and therefore alterations in Pep-19 levels may affect synaptic plasticity and behavior. To investigate its possible role, we generated and characterized pep-19/pcp4-null mice. Synaptic plasticity at excitatory synapses of cerebellar Purkinje cells, which express the highest levels of Pep-19, was dramatically altered in pep-19/pcp4-null mice. Instead of long-term depression, pep-19/pcp4-null mice exhibited long-term potentiation at parallel fiber-Purkinje cell synapses. The mutant mice have a marked deficit in their ability to learn a locomotor task, as measured by improved performance upon repeated testing on an accelerating rotarod. Thus, our data indicate that pep-19/pcp4 is a critical determinant of synaptic plasticity in cerebellum and locomotor learning.
The Neuroscientist | 2013
Jay A. Blundon; Stanislav S. Zakharenko
Sensory cortices can not only detect and analyze incoming sensory information but can also undergo plastic changes while learning behaviorally important sensory cues. This experience-dependent cortical plasticity is essential for shaping and modifying neuronal circuits to perform computations of multiple, previously unknown sensations, the adaptive process that is believed to underlie perceptual learning. Intensive efforts to identify the mechanisms of cortical plasticity have provided several important clues; however, the exact cellular sites and mechanisms within the intricate neuronal networks that underlie cortical plasticity have yet to be elucidated. In this review, we present several parallels between cortical plasticity in the auditory cortex and recently discovered mechanisms of synaptic plasticity gating at thalamocortical projections that provide the main input to sensory cortices. Striking similarities between the features and mechanisms of thalamocortical synaptic plasticity and those of experience-dependent cortical plasticity in the auditory cortex, especially in terms of regulation of an early critical period, point to thalamocortical projections as an important locus of plasticity in sensory cortices.
Brain Research | 2007
Catherine P. Fenster; Steven D. Fenster; Hannah P. Leahy; Cornelia Kurschner; Jay A. Blundon
Neuronal interleukin-16 (NIL-16) is a multi-PDZ domain protein expressed in post-mitotic neurons of the hippocampus and cerebellum. NIL-16 contains four PDZ domains, two of which are located within the neuron-specific N-terminal region. In yeast two-hybrid systems, the N-terminus of NIL-16 interacts with several ion channel proteins, including the Kv4.2 subunit of A-type K(+) channels. Here we provide evidence that NIL-16, through interactions with Kv4.2, influences Kv4.2 channel function and subcellular distribution. Specifically, coexpression of NIL-16 with Kv4.2 in COS-7 cells results in a significant reduction in whole-cell A-type current densities; however, when the Kv4.2 PDZ-ligand domain is mutated, Kv4.2 current densities are not affected by NIL-16 coexpression. Moreover, single-channel conductance was not influenced by the presence of NIL-16. In hippocampal neurons, A-type current densities are increased by conditions that inhibit interactions between NIL-16 and Kv4.2, such as overexpression of the Kv4.2 C-terminal PDZ-ligand domain and treatment with small-interfering RNA duplexes that reduce NIL-16 expression. Results of surface biotinylation assays using COS-7 cells suggest that Kv4.2 surface expression levels are reduced by coexpression with NIL-16. In addition, coexpression of NIL-16 with Kv4.2 induces Kv4.2 to form dense intracellular clusters; whereas without NIL-16, Kv4.2 channels cells are dispersed. Taken together, these data suggest that interactions between Kv4.2 and NIL-16 may reduce the number of functional Kv4.2-containing channels on the cell surface. In summary, NIL-16 may provide a novel form of A-type K(+) channel modulation that is localized specifically to neurons of the hippocampus and cerebellum.
Science | 2017
Jay A. Blundon; Noah C. Roy; Brett J. W. Teubner; Jing Yu; Tae-Yeon Eom; K. Jake Sample; Amar K. Pani; Richard J. Smeyne; Seung Baek Han; Ryan A. Kerekes; Derek C. Rose; Troy A. Hackett; Pradeep K. Vuppala; Burgess B. Freeman; Stanislav S. Zakharenko
Reopening a critical period Young brains, compared with adult brains, are plastic. This phenomenon has given rise to the concept of critical periods, during which acquisition of certain skills is optimal. In mice, an auditory critical period is only open in early postnatal days. The youthful brain tunes circuits to sounds in its environment in a way that the adult brain does not. This facility may form the basis for childhood language acquisition in humans. Blundon et al. show that by manipulating adenosine signaling in mice, some plasticity of the adult auditory cortex can be regained (see the Perspective by Kehayas and Holmaat). Disruption of adenosine production or adenosine receptor signaling in adult mice leads to improved tone discrimination abilities. Science, this issue p. 1352; see also p. 1335 The auditory cortex of adult mice acquires juvenile flexibility if adenosine signaling is disrupted. Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. Here we show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5′-nucleotidase–dependent adenosine production or A1–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement of tone-discrimination abilities. We conclude that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.