Jay A. Gottfried
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jay A. Gottfried.
NeuroImage | 2003
Ralf Deichmann; Jay A. Gottfried; Chloe Hutton; Robert Turner
A common problem in gradient-echo echo planar imaging (EPI) is the occurrence of image distortions and signal losses caused by susceptibility gradients near air/tissue interfaces. Since EPI is frequently used for functional magnetic resonance imaging experiments based on the blood oxygenation level-dependent effect, functional studies of certain brain regions affected by susceptibility gradients, such as the temporal lobes and the orbitofrontal cortex, may be compromised. In this work a method for signal recovery in certain regions of the orbitofrontal cortex is presented. The influence of in-plane susceptibility gradients is reduced by optimization of the imaging slice orientation. Through-plane susceptibility gradients are partly compensated by means of a moderate preparation gradient pulse similar to z-shimming. In contrast to several other techniques proposed in the literature for reducing susceptibility effects, this method does not compromise the temporal resolution and is therefore applicable to event-related studies.
Neuron | 2003
Jay A. Gottfried; R. J. Dolan
Human olfactory perception is notoriously unreliable, but shows substantial benefits from visual cues, suggesting important crossmodal integration between these primary sensory modalities. We used event-related fMRI to determine the underlying neural mechanisms of olfactory-visual integration in the human brain. Subjects participated in an olfactory detection task, whereby odors and pictures were delivered separately or together. By manipulating the degree of semantic correspondence between odor-picture pairs, we show a perceptual olfactory facilitation for semantically congruent (versus incongruent) trials. This behavioral advantage was associated with enhanced neural activity in anterior hippocampus and rostromedial orbitofrontal cortex. We suggest these findings can be interpreted as indicating that human hippocampus mediates reactivation of crossmodal semantic associations, even in the absence of explicit memory processing.
Nature Neuroscience | 2004
Jay A. Gottfried; R. J. Dolan
In extinction, an animal learns that a previously conditioned stimulus (CS+) no longer predicts delivery of a salient reinforcer (unconditioned stimulus, UCS). Rodent studies indicate that extinction relies on amygdala-prefrontal interactions and involves formation of memories that inhibit, without actually erasing, the original conditioning trace. Whether extinction learning in humans follows similar neurobiological principles is unknown. We used functional magnetic resonance imaging to measure human brain activity evoked during olfactory aversive conditioning and extinction learning. Neural responses in orbitofrontal cortex and amygdala were preferentially enhanced during extinction, suggesting potential cross-species preservation of learning mechanisms that oppose conditioning. Moreover, by manipulating UCS aversiveness via reinforcer inflation, we showed that a CS+ retains access to representations of UCS value in distinct regions of ventral prefrontal cortex, even as extinction proceeds.
The Journal of Neuroscience | 2002
Jay A. Gottfried; Ralf Deichmann; Joel S. Winston; R. J. Dolan
Studies of patients with focal brain injury indicate that smell perception involves caudal orbitofrontal and medial temporal cortices, but a more precise functional organization has not been characterized. In addition, although it is believed that odors are potent triggers of emotion, support for an anatomical association is scant. We sought to define the neural substrates of human olfactory information processing and determine how these are modulated by affective properties of odors. We used event-related functional magnetic resonance imaging (fMRI) in an olfactory version of a classical conditioning paradigm, whereby neutral faces were paired with pleasant, neutral, or unpleasant odors, under 50% reinforcement. By comparing paired (odor/face) and unpaired (face only) conditions, odor-evoked neural activations could be isolated specifically. In primary olfactory (piriform) cortex, spatially and temporally dissociable responses were identified along a rostrocaudal axis. A nonhabituating response in posterior piriform cortex was tuned to all odors, whereas activity in anterior piriform cortex reflected sensitivity to odor affect. Bilateral amygdala activation was elicited by all odors, regardless of valence. In posterior orbitofrontal cortex, neural responses evoked by pleasant and unpleasant odors were segregated within medial and lateral segments, respectively. The results indicate functional heterogeneity in areas critical to human olfaction. They also show that brain regions mediating emotional processing are differentially activated by odor valence, providing evidence for a close anatomical coupling between olfactory and emotional processes.
The Journal of Neuroscience | 2005
Joel S. Winston; Jay A. Gottfried; James M. Kilner; R. J. Dolan
Arousal and valence are proposed to represent fundamental dimensions of emotion. The neural substrates for processing these aspects of stimuli are studied widely, with recent studies of chemosensory processing suggesting the amygdala processes intensity (a surrogate for arousal) rather than valence. However, these investigations have assumed that a valence effect in the amygdala is linear such that testing valence extremes is sufficient to infer responses across valence space. In this study, we tested an alternative hypothesis, namely that valence responses in the amygdala are nonlinear. Using event-related functional magnetic resonance imaging, we measured amygdala responses to high- and low-concentration variants of pleasant, neutral, and unpleasant odors. Our results demonstrate that the amygdala exhibits an intensity-by-valence interaction in olfactory processing. In other words, the effect of intensity on amygdala activity is not the same at all levels of valence. Specifically, the amygdala responds differentially to high (vs low)-intensity odor for pleasant and unpleasant smells but not for neutral smells. This implies that the amygdala codes neither intensity nor valence per se, but a combination that we suggest reflects the overall emotional value of a stimulus.
Nature Neuroscience | 2009
James D. Howard; Jane Plailly; Marcus Grueschow; John-Dylan Haynes; Jay A. Gottfried
Efficient recognition of odorous objects universally shapes animal behavior and is crucial for survival. To distinguish kin from nonkin, mate from nonmate and food from nonfood, organisms must be able to create meaningful perceptual representations of odor qualities and categories. It is currently unknown where and in what form the brain encodes information about odor quality. By combining functional magnetic resonance imaging (fMRI) with multivariate (pattern-based) techniques, we found that spatially distributed ensemble activity in human posterior piriform cortex (PPC) coincides with perceptual ratings of odor quality, such that odorants with more (or less) similar fMRI patterns were perceived as more (or less) alike. We did not observe these effects in anterior piriform cortex, amygdala or orbitofrontal cortex, indicating that ensemble coding of odor categorical perception is regionally specific for PPC. These findings substantiate theoretical models emphasizing the importance of distributed piriform templates for the perceptual reconstruction of odor object quality.
Neuron | 2006
Jay A. Gottfried; Joel S. Winston; R. J. Dolan
The relationship between odorant structure and odor quality has been a focus of olfactory research for 100 years, although no systematic correlations are yet apparent. Animal studies suggest that topographical representations of odorant structure in olfactory bulb form the perceptual basis of odor quality. Whether central olfactory regions are similarly organized is unclear. Using an olfactory version of fMRI cross-adaptation, we measured neural responses in primary olfactory (piriform) cortex as subjects smelled pairs of odorants systematically differing in quality and molecular functional group (as one critical attribute of odorant structure). Our results indicate a double dissociation in piriform cortex, whereby posterior regions encode quality (but not structure) and anterior regions encode structure (but not quality). The presence of structure-based codes suggests fidelity of sensory information arising from olfactory bulb. In turn, quality-based codes are independent of any simple structural configuration, implying that synthetic mechanisms may underlie our experience of smell.
The Journal of Neuroscience | 2008
Jane Plailly; James D. Howard; Darren R. Gitelman; Jay A. Gottfried
It is widely assumed that the thalamus is functionally irrelevant for the sense of smell. Although animal studies suggest that the mediodorsal (MD) thalamus links primary olfactory (piriform) cortex to olfactory neocortical projection sites in orbitofrontal cortex (OFC), this transthalamic route is regarded to be inconsequential, particularly compared with a direct monosynaptic pathway linking piriform cortex and OFC. In this study, we combined functional magnetic resonance imaging with novel effective connectivity techniques to measure attention-dependent network coherence within direct (nonthalamic) and indirect (transthalamic) olfactory pathways. Human subjects were presented with (or without) an odor and with (or without) a tone, while selectively attending to either modality. Attention to odor significantly modulated neural coupling within the indirect pathway, strengthening MD thalamus–OFC connectivity. Critically, these effects were modality specific (odor > tone attention), directionally sensitive (forward > backward connections), and selective to route (indirect > direct pathway). Our findings support the idea that the human transthalamic pathway is an active modulatory target of olfactory attention. The results imply that olfaction, like all other sensory modalities, requires a thalamic relay, if only to consciously analyze a smell.
Psychological Science | 2007
Wen Li; Isabel Moallem; Ken A. Paller; Jay A. Gottfried
It is widely accepted that unconscious processes can modulate judgments and behavior, but do such influences affect ones daily interactions with other people? Given that olfactory information has relatively direct access to cortical and subcortical emotional circuits, we tested whether the affective content of subliminal odors alters social preferences. Participants rated the likeability of neutral faces after smelling pleasant, neutral, or unpleasant odors delivered below detection thresholds. Odor affect significantly shifted likeability ratings only for those participants lacking conscious awareness of the smells, as verified by chance-level trial-by-trial performance on an odor-detection task. Across participants, the magnitude of this priming effect decreased as sensitivity for odor detection increased. In contrast, heart rate responses tracked odor valence independently of odor awareness. These results indicate that social preferences are subject to influences from odors that escape awareness, whereas the availability of conscious odor information may disrupt such effects.
Neuron | 2006
Wen Li; Erin Luxenberg; Todd B. Parrish; Jay A. Gottfried
It is widely presumed that odor quality is a direct outcome of odorant structure, but human studies indicate that molecular knowledge of an odorant is not always sufficient to predict odor quality. Indeed, the same olfactory input may generate different odor percepts depending on prior learning and experience. Combining functional magnetic resonance imaging with an olfactory paradigm of perceptual learning, we examined how sensory experience modifies odor perception and odor quality coding in the human brain. Prolonged exposure to a target odorant enhanced perceptual differentiation for odorants related in odor quality or functional group, an effect that was paralleled by learning-induced response increases in piriform cortex and orbitofrontal cortex (OFC). Critically, the magnitude of OFC activation predicted subsequent improvement in behavioral differentiation. Our findings suggest that neural representations of odor quality can be rapidly updated through mere perceptual experience, a mechanism that may underlie the development of odor perception.