Jay C. Jha
Baker IDI Heart and Diabetes Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jay C. Jha.
Journal of The American Society of Nephrology | 2014
Jay C. Jha; Stephen P. Gray; David Barit; Jun Okabe; Assam El-Osta; Tamehachi Namikoshi; Vicki Thallas-Bonke; Kirstin Wingler; Cedric Szyndralewiez; Freddy Heitz; Rhian M. Touyz; Mark E. Cooper; Harald Schmidt; Karin Jandeleit-Dahm
Diabetic nephropathy may occur, in part, as a result of intrarenal oxidative stress. NADPH oxidases comprise the only known dedicated reactive oxygen species (ROS)-forming enzyme family. In the rodent kidney, three isoforms of the catalytic subunit of NADPH oxidase are expressed (Nox1, Nox2, and Nox4). Here we show that Nox4 is the main source of renal ROS in a mouse model of diabetic nephropathy induced by streptozotocin administration in ApoE(-/-) mice. Deletion of Nox4, but not of Nox1, resulted in renal protection from glomerular injury as evidenced by attenuated albuminuria, preserved structure, reduced glomerular accumulation of extracellular matrix proteins, attenuated glomerular macrophage infiltration, and reduced renal expression of monocyte chemoattractant protein-1 and NF-κB in streptozotocin-induced diabetic ApoE(-/-) mice. Importantly, administration of the most specific Nox1/4 inhibitor, GKT137831, replicated these renoprotective effects of Nox4 deletion. In human podocytes, silencing of the Nox4 gene resulted in reduced production of ROS and downregulation of proinflammatory and profibrotic markers that are implicated in diabetic nephropathy. Collectively, these results identify Nox4 as a key source of ROS responsible for kidney injury in diabetes and provide proof of principle for an innovative small molecule approach to treat and/or prevent chronic kidney failure.
Journal of Cardiovascular Translational Research | 2012
Mona Sedeek; Augusto C. Montezano; Richard L. Hébert; Stephen P. Gray; Elyse Di Marco; Jay C. Jha; Mark E. Cooper; Karin Jandeleit-Dahm; Ernesto L. Schiffrin; Jennifer L. Wilkinson-Berka; Rhian M. Touyz
Most diabetes-related complications and causes of death arise from cardiovascular disease and end-stage renal disease. Amongst the major complications of diabetes mellitus are retinopathy, neuropathy, nephropathy and accelerated atherosclerosis. Increased bioavailability of reactive oxygen species (ROS) (termed oxidative stress), derived in large part from the NADPH oxidase (Nox) family of free radical producing enzymes, has been demonstrated in experimental and clinical diabetes and has been implicated in the cardiovascular and renal complications of diabetes. The present review focuses on the role of Noxs and oxidative stress in some major complications of diabetes, including nephropathy, retinopathy and atherosclerosis. We also discuss Nox isoforms as potential targets for therapy.
Clinical Science | 2015
Aaron McClelland; Michal Herman-Edelstein; Radko Komers; Jay C. Jha; Catherine E. Winbanks; Shinji Hagiwara; Paul Gregorevic; Phillip Kantharidis; Mark E. Cooper
The cytokine transforming growth factor (TGF)-β1 plays a central role in diabetic nephropathy (DN) with data implicating the miRNA (miR) miR-21 as a key modulator of its prosclerotic actions. In the present study, we demonstrate data indicating that miR-21 up-regulation positively correlates with the severity of fibrosis and rate of decline in renal function in human DN. Furthermore, concomitant analyses of various models of fibrotic renal disease and experimental DN, confirm tubular miR-21 up-regulation. The fibrotic changes associated with increased miR-21 levels are proposed to include the regulation of TGF-β1-mediated mothers against decapentaplegic homolog 3 (SMAD3)- and phosphoinositide 3-kinase (PI3K)-dependent signalling pathways via co-ordinated repression of mothers against decapentaplegic homolog 7 (SMAD7) and phosphatase and tensin homologue (PTEN) respectively. This represents a previously uncharacterized interaction axis between miR-21 and PTEN-SMAD7. Targeting of these proteins by miR-21 resulted in de-repression of the respective pathways as reflected by increases in SMAD3 and V-Akt murine thymoma viral oncogene homolog 1 (AKT) phosphorylation. Many of the changes typically induced by TGF-β1, including phosphorylation of signalling mediators, were further enhanced by miR-21. Collectively, these data present a unified model for a key role for miR-21 in the regulation of renal tubular extracellular matrix (ECM) synthesis and accumulation and provide important insights into the molecular pathways implicated in the progression of DN.
Physiological Reports | 2014
Vicki Thallas-Bonke; Jay C. Jha; Stephen P. Gray; David Barit; Hermann Haller; Harald Schmidt; Melinda T. Coughlan; Mark E. Cooper; Josephine M. Forbes; Karin Jandeleit-Dahm
Current treatments for diabetic nephropathy (DN) only result in slowing its progression, thus highlighting a need to identify novel targets. Increased production of reactive oxygen species (ROS) is considered a key downstream pathway of end‐organ injury with increasing data implicating both mitochondrial and cytosolic sources of ROS. The enzyme, NADPH oxidase, generates ROS in the kidney and has been implicated in the activation of protein kinase C (PKC), in the pathogenesis of DN, but the link between PKC and Nox‐derived ROS has not been evaluated in detail in vivo. In this study, global deletion of a NADPH‐oxidase isoform, Nox4, was examined in mice with streptozotocin‐induced diabetes (C57Bl6/J) in order to evaluate the effects of Nox4 deletion, not only on renal structure and function but also on the PKC pathway and downstream events. Nox4 deletion attenuated diabetes‐associated increases in albuminuria, glomerulosclerosis, and extracellular matrix accumulation. Lack of Nox4 resulted in a decrease in diabetes‐induced renal cortical ROS derived from the mitochondria and the cytosol, urinary isoprostanes, and PKC activity. Immunostaining of renal cortex revealed that major isoforms of PKC, PKC‐α and PKC‐β1, were increased with diabetes and normalized by Nox4 deletion. Downregulation of the PKC pathway was observed in tandem with reduced expression of vascular endothelial growth factor (VEGF), transforming growth factor (TGF)‐β1 and restoration of the podocyte slit pore protein nephrin. This study suggests that deletion of Nox4 may alleviate renal injury via PKC‐dependent mechanisms, further strengthening the view that Nox4 is a suitable target for renoprotection in diabetes.
Diabetologia | 2016
Jay C. Jha; Vicki Thallas-Bonke; Claudine Banal; Stephen P. Gray; Bryna S.M. Chow; Georg Ramm; Susan E. Quaggin; Mark E. Cooper; Harald Schmidt; Karin Jandeleit-Dahm
Aims/hypothesisChanges in podocyte morphology and function are associated with albuminuria and progression of diabetic nephropathy. NADPH oxidase 4 (NOX4) is the main source of reactive oxygen species (ROS) in the kidney and Nox4 is upregulated in podocytes in response to high glucose. We assessed the role of NOX4-derived ROS in podocytes in vivo in a model of diabetic nephropathy using a podocyte-specific NOX4-deficient mouse, with a major focus on the development of albuminuria and ultra-glomerular structural damage.MethodsStreptozotocin-induced diabetes-associated changes in renal structure and function were studied in male floxedNox4 and podocyte-specific, NOX4 knockout (podNox4KO) mice. We assessed albuminuria, glomerular extracellular matrix accumulation and glomerulosclerosis, and markers of ROS and inflammation, as well as glomerular basement membrane thickness, effacement of podocytes and expression of the podocyte-specific protein nephrin.ResultsPodocyte-specific Nox4 deletion in streptozotocin-induced diabetic mice attenuated albuminuria in association with reduced vascular endothelial growth factor (VEGF) expression and prevention of the diabetes-induced reduction in nephrin expression. In addition, podocyte-specific Nox4 deletion reduced glomerular accumulation of collagen IV and fibronectin, glomerulosclerosis and mesangial expansion, as well as glomerular basement membrane thickness. Furthermore, diabetes-induced increases in renal ROS, glomerular monocyte chemoattractant protein-1 (MCP-1) and protein kinase C alpha (PKC-α) were attenuated in podocyte-specific NOX4-deficient mice.Conclusions/interpretationCollectively, this study shows the deleterious effect of Nox4 expression in podocytes by promoting podocytopathy in association with albuminuria and extracellular matrix accumulation in experimental diabetes, emphasising the role of NOX4 as a target for new renoprotective agents.
Clinical Science | 2015
Elyse Di Marco; Jay C. Jha; Arpeeta Sharma; Jennifer L. Wilkinson-Berka; Karin Jandeleit-Dahm; Judy B. de Haan
Despite the wealth of pre-clinical support for a role for reactive oxygen and nitrogen species (ROS/RNS) in the aetiology of diabetic complications, enthusiasm for antioxidant therapeutic approaches has been dampened by less favourable outcomes in large clinical trials. This has necessitated a re-evaluation of pre-clinical evidence and a more rational approach to antioxidant therapy. The present review considers current evidence, from both pre-clinical and clinical studies, to address the benefits of antioxidant therapy. The main focus of the present review is on the effects of direct targeting of ROS-producing enzymes, the bolstering of antioxidant defences and mechanisms to improve nitric oxide availability. Current evidence suggests that a more nuanced approach to antioxidant therapy is more likely to yield positive reductions in end-organ injury, with considerations required for the types of ROS/RNS involved, the timing and dosage of antioxidant therapy, and the selective targeting of cell populations. This is likely to influence future strategies to lessen the burden of diabetic complications such as diabetes-associated atherosclerosis, diabetic nephropathy and diabetic retinopathy.
Diabetes | 2017
Jay C. Jha; Claudine Banal; Jun Okabe; Stephen P. Gray; Thushan S. Hettige; Bryna S.M. Chow; Vicki Thallas-Bonke; Lisanne C. de Vos; Chet E. Holterman; Melinda T. Coughlan; David Anthony Power; Alison Skene; Elif I. Ekinci; Mark E. Cooper; Rhian M. Touyz; Chris R. J. Kennedy; Karin Jandeleit-Dahm
NADPH oxidase–derived excessive production of reactive oxygen species (ROS) in the kidney plays a key role in mediating renal injury in diabetes. Pathological changes in diabetes include mesangial expansion and accumulation of extracellular matrix (ECM) leading to glomerulosclerosis. There is a paucity of data about the role of the Nox5 isoform of NADPH oxidase in animal models of diabetic nephropathy since Nox5 is absent in the mouse genome. Thus, we examined the role of Nox5 in human diabetic nephropathy in human mesangial cells and in an inducible human Nox5 transgenic mouse exposed to streptozotocin-induced diabetes. In human kidney biopsies, Nox5 was identified to be expressed in glomeruli, which appeared to be increased in diabetes. Colocalization demonstrated Nox5 expression in mesangial cells. In vitro, silencing of Nox5 in human mesangial cells was associated with attenuation of the hyperglycemia and TGF-β1–induced enhanced ROS production, increased expression of profibrotic and proinflammatory mediators, and increased TRPC6, PKC-α, and PKC-β expression. In vivo, vascular smooth muscle cell/mesangial cell–specific overexpression of Nox5 in a mouse model of diabetic nephropathy showed enhanced glomerular ROS production, accelerated glomerulosclerosis, mesangial expansion, and ECM protein (collagen IV and fibronectin) accumulation as well as increased macrophage infiltration and expression of the proinflammatory chemokine MCP-1. Collectively, this study provides evidence of a role for Nox5 and its derived ROS in promoting progression of diabetic nephropathy.
Expert Review of Endocrinology & Metabolism | 2014
Stephen P. Gray; Jay C. Jha; Elyse Di Marco; Karin Am Jandeleit-Dahm
The development of macro- and microvascular complications is accelerated in diabetic patients. While some therapeutic regimes have helped in delaying progression of complications, none have yet been able to halt the progression and prevent vascular disease, highlighting the need to identify new therapeutic targets. Increased oxidative stress derived from the NADPH oxidase (Nox) family has recently been identified to play an important role in the pathophysiology of vascular disease. In recent years, specific Nox isoforms have been implicated in contributing to the development of atherosclerosis of major vessels, as well as damage of the small vessels within the kidney and the eye. With the use of novel Nox inhibitors, it has been demonstrated that these complications can be attenuated, indicating that targeting Nox derived oxidative stress holds potential as a new therapeutic strategy.
Diabetology international | 2014
Shinji Hagiwara; Jay C. Jha; Mark E. Cooper
It is increasingly appreciated that subjects with diabetes who develop one vascular complication are more likely to also suffer from another complication. For example, those with diabetic nephropathy will often have concomitant retinopathy and a much higher risk of macrovascular disease leading to increased cardiovascular morbidity and mortality. It is considered that haemodynamic and metabolic factors interact to activate signaling pathways that then result in upregulation of a range of well-characterized cytokines and growth factors leading to various pathological processes including angiogenesis, inflammation and extracellular matrix accumulation. As the various mediators of end-organ injury in diabetes are identified, new targets for intervention are being explored. Some of these targets such as enzymes implicated in oxidative stress such as nicotinamide adenine dinucleotide phosphate oxidase (Nox) 1 and Nox 4, various growth factors such as transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) as well as their cognate receptors are increasingly being investigated first in preclinical studies and now in early phase clinical trials.
Kidney International | 2014
Bo Wang; Jay C. Jha; Shinji Hagiwara; Aaron McClelland; Karin Jandeleit-Dahm; Merlin C. Thomas; Mark E. Cooper; Phillip Kantharidis