Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay C. Strum is active.

Publication


Featured researches published by Jay C. Strum.


Diabetes | 2008

Activation of Peroxisome Proliferator–Activated Receptor (PPAR)δ Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men

Ulf Risérus; Dennis L. Sprecher; Tony Johnson; Eric Olson; Sandra Hirschberg; Aixue Liu; Zeke Fang; Priti S. Hegde; Duncan B. Richards; Leli Sarov-Blat; Jay C. Strum; Samar Basu; Jane Cheeseman; Barbara A. Fielding; Sandy M. Humphreys; Theodore M. Danoff; Niall R. Moore; Peter R. Murgatroyd; Stephen O'Rahilly; Pauline Sutton; Tim Willson; David Hassall; Keith N. Frayn; Fredrik Karpe

OBJECTIVE— Pharmacological use of peroxisome proliferator–activated receptor (PPAR)δ agonists and transgenic overexpression of PPARδ in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. RESEARCH DESIGN AND METHODS— The PPARδ agonist (10 mg o.d. GW501516), a comparator PPARα agonist (20 μg o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. RESULTS— Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (−30%), apolipoprotein B (−26%), LDL cholesterol (−23%), and insulin (−11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (−30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO2 directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased. CONCLUSIONS— The PPARδ agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle.


Diabetes | 2007

Adipose Mitochondrial Biogenesis Is Suppressed in db/db and High-Fat Diet–Fed Mice and Improved by Rosiglitazone

James X. Rong; Yang Qiu; Michael K. Hansen; Lei Zhu; Vivian Zhang; Mi Xie; Yuji Okamoto; Michael D. Mattie; Hiroyuki Higashiyama; Satoshi Asano; Jay C. Strum; Terence E. Ryan

The objective of this study was to further establish and confirm the relationship of adipose mitochondrial biogenesis in diabetes/obesity and the effects of rosiglitazone (RSG), a peroxisome proliferator–activated receptor (PPAR) γ agonist, by systematically analyzing mitochondrial gene expression and function in two mouse models of obesity and type 2 diabetes. Using microarray technology, adipose mitochondrial gene transcription was studied in db/db, high-fat diet–fed C57BL/6 (HFD) and respective control mice with or without RSG treatment. The findings were extended using mitochondrial staining, DNA quantification, and measurements of citrate synthase activity. In db/db and HFD mice, gene transcripts associated with mitochondrial ATP production, energy uncoupling, mitochondrial ribosomal proteins, outer and inner membrane translocases, and mitochondrial heat-shock proteins were decreased in abundance, compared with db/+ and standard-fat diet–fed control mice, respectively. RSG dose-dependently increased these transcripts in both db/db and HFD mice and induced transcription of mitochondrial structural proteins and cellular antioxidant enzymes responsible for removal of reactive oxygen species generated by increased mitochondrial activity. Transcription factors, including PPAR coactivator (PGC)-1β, PGC-1α, estrogen-related receptor α, and PPARα, were suppressed in both models and induced by RSG. The effects of RSG on adipose mitochondrial genes were confirmed by quantitative RT-PCR and further supported by mitochondrial staining, mitochondrial DNA quantification, and citrate synthase activity. Adipose mitochondrial biogenesis was overwhelmingly suppressed in both mouse models of diabetes/obesity and globally induced by RSG. These findings suggest an important role of adipose mitochondria in diabetes/obesity and the potential for new treatment approaches targeting adipose mitochondria.


Journal of Alzheimer's Disease | 2007

Rosiglitazone Induces Mitochondrial Biogenesis in Mouse Brain

Jay C. Strum; Ron Shehee; David Virley; Jill C. Richardson; Michael D. Mattie; Paula Selley; Sujoy Ghosh; Christina M. Nock; Ann M. Saunders; Allen D. Roses

Rosiglitazone was found to simulate mitochondrial biogenesis in mouse brain in an apolipoprotein (Apo) E isozyme-independent manner. Rosiglitazone induced both mitochondrial DNA (mtDNA) and estrogen-stimulated related receptor alpha (ESRRA) mRNA, a key regulator of mitochondrial biogenesis. Transcriptomics and proteomics analysis suggested the mitochondria produced in the presence of human ApoE3 and E4 were not as metabolically efficient as those in the wild type or ApoE knockout mice. Thus, we propose that PPARgamma agonism induces neuronal mitochondrial biogenesis and improves glucose utilization leading to improved cellular function and provides mechanistic support for the improvement in cognition observed in treatment of Alzheimers patients with rosiglitazone.


BMC Pharmacology | 2004

Serum adiponectin as a biomarker for in vivo PPARgamma activation and PPARgamma agonist-induced efficacy on insulin sensitization/lipid lowering in rats

Baichun Yang; Kathleen K. Brown; Lihong Chen; Kevin Carrick; Lisa G. Clifton; Judi A McNulty; Deborah A. Winegar; Jay C. Strum; Stephen A. Stimpson; Gregory L Pahel

BackgroundPPARγ agonists ameliorate insulin resistance and dyslipidemia in type 2 diabetic patients. Adiponectin possesses insulin sensitizing properties, and predicts insulin sensitivity of both glucose and lipid metabolism. In diet-induced insulin resistant rats and ZDF rats, the current studies determined the correlation between PPARγ agonist-upregulated fatty acid binding protein(FABP3) mRNA in adipose tissue and PPARγ agonist-elevated serum adiponectin, and the correlation between PPARγ agonist-elevated serum adiponectin and PPARγ agonist-mediated efficacy in insulin sensitization and lipid lowering.ResultsParallel groups of SD rats were fed a high fat/sucrose (HF) diet for 4 weeks. These rats were orally treated for the later 2 weeks with vehicle, either PPARγ agonist GI262570 (0.2–100 mg/kg, Q.D.), or GW347845 (3 mg/kg, B.I.D). Rats on HF diet showed significant increases in postprandial serum triglycerides, free fatty acids (FFA), insulin, and area under curve (AUC) of serum insulin during an oral glucose tolerance test, but showed no change in serum glucose, adiponectin, and glucose AUC. Treatment with GI262570 dose-dependently upregulated adipose FABP3 mRNA, and increased serum adiponectin. There was a positive correlation between adipose FABP3 mRNA and serum adiponectin (r = 0.7350, p < 0.01). GI262570 dose-dependently decreased the diet-induced elevations in triglycerides, FFA, insulin, and insulin AUC. Treatment with GW347845 had similar effects on serum adiponectin and the diet-induced elevations. There were negative correlations for adiponectin versus triglycerides, FFA, insulin, and insulin AUC (For GI262570, r = -0.7486, -0.4581, -0.4379, and -0.3258 respectively, all p < 0.05. For GW347845, r = -0.6370, -0.6877, -0.5512, and -0.3812 respectively, all p < 0.05). In ZDF rats treated with PPARγ agonists pioglitazone (3–30 mg/kg, B.I.D.) or GW347845 (3 mg/kg, B.I.D.), there were also negative correlations for serum adiponectin versus glucose, triglycerides, FFA (for pioglitazone, r = -0.7005, -0.8603, and -0.9288 respectively; for GW347845, r = -0.9721, -0.8483, and -0.9453 respectively, all p < 0.01).ConclusionsThis study demonstrated that (a) PPARγ agonists improved insulin sensitivity and ameliorated dyslipidemia in HF fed rats and ZDF rats, which were correlated with serum adiponectin; (b) Serum adiponectin was positively correlated with adipose FABP3 mRNA in GI262570-treated rats. These data suggest that serum adiponectin can serve as a biomarker for both in vivo PPARγ activation and PPARγ agonist-induced efficacy on insulin resistance and dyslipidemia in rats.


Brain Research | 2007

Evaluation of the mGlu8 receptor as a putative therapeutic target in schizophrenia.

Melanie J. Robbins; Kathryn R. Starr; Andy Honey; Ellen M. Soffin; Claire Rourke; Gareth A. Jones; Fiona M. Kelly; Jay C. Strum; Rosemary A. Melarange; Andy J. Harris; Magalie Rocheville; Tom Rupniak; Paul R. Murdock; Declan N.C. Jones; James N.C. Kew; Peter R. Maycox

Aberrant glutamatergic neurotransmission may underlie the pathogenesis of schizophrenia and metabotropic glutamate receptors (mGluRs) have been implicated in the disease. We have established the localization of the group III mGluR subtype, mGluR8, in the human body and investigated the biological effects of the selective mGluR8 agonist (S)-3,4-dicarboxyphenylglycine ((S)-3,4-DCPG) in schizophrenia-related animal models. The mGlu8 receptor has a widespread CNS distribution with expression observed in key brain regions associated with schizophrenia pathogenesis including the hippocampus. (S)-3,4-DCPG inhibited synaptic transmission and increased paired-pulse facilitation in rat hippocampal slices supporting the role of mGluR8 as a presynaptic autoreceptor. Using the rat Maximal Electroshock Seizure Threshold (MEST) test, (S)-3,4-DCPG (30 mg/kg, i.p.) reduced seizure activity confirming the compound to be centrally active following systemic administration. (S)-3,4-DCPG did not reverse (locomotor) hyperactivity induced by acute administration of phenylcyclidine (PCP, 1-32 mg/kg, i.p.) or amphetamine (3-30 mg/kg, i.p.) in Sprague-Dawley rats. However, 10 nmol (i.c.v.) (S)-3.4-DCPG did reverse amphetamine-induced hyperactivity in mice although it also inhibited spontaneous locomotor activity at this dose. In addition, mGluR8 null mutant mouse behavioral phenotyping revealed an anxiety-related phenotype but no deficit in sensorimotor gating. These data provide a potential role for mGluR8 in anxiety and suggest that mGluR8 may not be a therapeutic target for schizophrenia.


Ppar Research | 2011

Rosiglitazone Induces Mitochondrial Biogenesis in Differentiated Murine 3T3-L1 and C3H/10T1/2 Adipocytes

James X. Rong; Jean-Louis D. Klein; Yang Qiu; Mi Xie; Jennifer H. Johnson; K. Michelle Waters; Vivian Zhang; Jennifer A. Kashatus; Katja Remlinger; Nan Bing; Renae M. Crosby; Tymissha K. Jackson; Sam M. Witherspoon; John T. Moore; Terence E. Ryan; Sue D. Neill; Jay C. Strum

Growing evidence indicates that PPARγ agonists, including rosiglitazone (RSG), induce adipose mitochondrial biogenesis. By systematically analyzing mitochondrial gene expression in two common murine adipocyte models, the current study aimed to further establish the direct role of RSG and capture temporal changes in gene transcription. Microarray profiling revealed that in fully differentiated 3T3-L1 and C3H/10T1/2 adipocytes treated with RSG or DMSO vehicle for 1, 2, 4, 7, 24, and 48u2009hrs, RSG overwhelmingly increased mitochondrial gene transcripts time dependently. The timing of the increases was consistent with the cascade of organelle biogenesis, that is, initiated by induction of transcription factor(s), followed by increases in the biosynthesis machinery, and then by increases in functional components. The transcriptional increases were further validated by increased mitochondrial staining, citrate synthase activity, and O2 consumption, and were found to be associated with increased adiponectin secretion. The work provided further insight on the mechanism of PPARγ-induced mitochondrial biogenesis in differentiated adipocytes.


Journal of Biological Chemistry | 1994

The cysteine-rich region of raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-ras.

Sujoy Ghosh; Wen Qin Xie; A. F. G. Quest; G. M. Mabrouk; Jay C. Strum; Robert M. Bell


Clinics in Laboratory Medicine | 2007

Automated Solutions for Total RNA Isolation from Diverse Sample Types

Paula Selley; Jimmy Bruner; Fiona M. Kelly; Frank Maurio; Michelle Waters; Jay C. Strum


Archive | 2009

through Repression of SirT1 MicroRNA 132 Regulates Nutritional Stress-Induced Chemokine Production

Michelle Waters; Jay C. Strum; Jennifer H. Johnson; James Ward; Hongbo Xie; John Feild; Austin Hester; Alexander Alford


Archive | 2007

Adipose Mitochondrial Biogenesis Is Suppressed in db/db and High-Fat Diet-Fed Mice and Improved by

Rosiglitazone X. Rong; Yang Qiu; Michael K. Hansen; Lei Zhu; Vivian Zhang; Mi Xie; Yuji Okamoto; Michael D. Mattie; Hiroyuki Higashiyama; Satoshi Asano; Jay C. Strum; Terence E. Ryan

Collaboration


Dive into the Jay C. Strum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge