Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay D. Evans is active.

Publication


Featured researches published by Jay D. Evans.


PLOS ONE | 2009

Colony Collapse Disorder: A Descriptive Study

Dennis vanEngelsdorp; Jay D. Evans; Claude Saegerman; Christopher A. Mullin; Eric Haubruge; Bach Kim Nguyen; Maryann Frazier; James L. Frazier; Diana Cox-Foster; Yanping Chen; Robyn M. Underwood; David R. Tarpy; Jeffery S. Pettis

Background Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. Methods and Principal Findings Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels), no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor) were higher in control colonies than CCD-affected colonies. Conclusions/Significance This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted.


Insect Molecular Biology | 2006

Immune pathways and defence mechanisms in honey bees Apis mellifera.

Jay D. Evans; Katherine A. Aronstein; Yanping Chen; Charles Hetru; J-L Imler; Haobo Jiang; Michael R. Kanost; Graham J. Thompson; Zhen Zou; Dan Hultmark

Social insects are able to mount both group‐level and individual defences against pathogens. Here we focus on individual defences, by presenting a genome‐wide analysis of immunity in a social insect, the honey bee Apis mellifera. We present honey bee models for each of four signalling pathways associated with immunity, identifying plausible orthologues for nearly all predicted pathway members. When compared to the sequenced Drosophila and Anopheles genomes, honey bees possess roughly one‐third as many genes in 17 gene families implicated in insect immunity. We suggest that an implied reduction in immune flexibility in bees reflects either the strength of social barriers to disease, or a tendency for bees to be attacked by a limited set of highly coevolved pathogens.


Nature Genetics | 2007

Dynamic evolution of the innate immune system in Drosophila

Timothy B. Sackton; Brian P. Lazzaro; Todd A. Schlenke; Jay D. Evans; Dan Hultmark; Andrew G. Clark

The availability of complete genome sequence from 12 Drosophila species presents the opportunity to examine how natural selection has affected patterns of gene family evolution and sequence divergence among different components of the innate immune system. We have identified orthologs and paralogs of 245 Drosophila melanogaster immune-related genes in these recently sequenced genomes. Genes encoding effector proteins, and to a lesser extent genes encoding recognition proteins, are much more likely to vary in copy number across species than genes encoding signaling proteins. Furthermore, we can trace the apparent recent origination of several evolutionarily novel immune-related genes and gene families. Using codon-based likelihood methods, we show that immune-system genes, and especially those encoding recognition proteins, evolve under positive darwinian selection. Positively selected sites within recognition proteins cluster in domains involved in recognition of microorganisms, suggesting that molecular interactions between hosts and pathogens may drive adaptive evolution in the Drosophila immune system.


Genome Biology | 2010

Immunity and other defenses in pea aphids, Acyrthosiphon pisum

Nicole M. Gerardo; Boran Altincicek; Caroline Anselme; Hagop S. Atamian; Seth M. Barribeau; Martin de Vos; Elizabeth J. Duncan; Jay D. Evans; Toni Gabaldón; Murad Ghanim; Adelaziz Heddi; Isgouhi Kaloshian; Amparo Latorre; Andrés Moya; Atsushi Nakabachi; Benjamin J. Parker; Vincente Pérez-Brocal; Miguel Pignatelli; Yvan Rahbé; John S Ramsey; Chelsea J. Spragg; Javier Tamames; Daniel Tamarit; Cecilia Tamborindeguy; Caroline Vincent-Monegat; Andreas Vilcinskas

BackgroundRecent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result in the production of response molecules, such as antimicrobial peptides and lysozymes, which degrade or destroy invaders. Using the recently sequenced genome of the pea aphid (Acyrthosiphon pisum), we conducted the first extensive annotation of the immune and stress gene repertoire of a hemipterous insect, which is phylogenetically distantly related to previously characterized insects models.ResultsStrikingly, pea aphids appear to be missing genes present in insect genomes characterized to date and thought critical for recognition, signaling and killing of microbes. In line with results of gene annotation, experimental analyses designed to characterize immune response through the isolation of RNA transcripts and proteins from immune-challenged pea aphids uncovered few immune-related products. Gene expression studies, however, indicated some expression of immune and stress-related genes.ConclusionsThe absence of genes suspected to be essential for the insect immune response suggests that the traditional view of insect immunity may not be as broadly applicable as once thought. The limitations of the aphid immune system may be representative of a broad range of insects, or may be aphid specific. We suggest that several aspects of the aphid life style, such as their association with microbial symbionts, could facilitate survival without strong immune protection.


PLOS ONE | 2012

Pathogen Webs in Collapsing Honey Bee Colonies

R. Scott Cornman; David R. Tarpy; Yanping Chen; Lacey Jeffreys; Dawn Lopez; Jeffery S. Pettis; Dennis vanEngelsdorp; Jay D. Evans

Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.


Genome Biology | 2007

Comparative genomic analysis of the Tribolium immune system.

Zhen Zou; Jay D. Evans; Zhiqiang Lu; Picheng Zhao; Michael J. Williams; Niranji Sumathipala; Charles Hetru; Dan Hultmark; Haobo Jiang

BackgroundTribolium castaneum is a species of Coleoptera, the largest and most diverse order of all eukaryotes. Components of the innate immune system are hardly known in this insect, which is in a key phylogenetic position to inform us about genetic innovations accompanying the evolution of holometabolous insects. We have annotated immunity-related genes and compared them with homologous molecules from other species.ResultsAround 300 candidate defense proteins are identified based on sequence similarity to homologs known to participate in immune responses. In most cases, paralog counts are lower than those of Drosophila melanogaster or Anopheles gambiae but are substantially higher than those of Apis mellifera. The genome contains probable orthologs for nearly all members of the Toll, IMD, and JAK/STAT pathways. While total numbers of the clip-domain serine proteinases are approximately equal in the fly (29), mosquito (32) and beetle (30), lineage-specific expansion of the family is discovered in all three species. Sixteen of the thirty-one serpin genes form a large cluster in a 50 kb region that resulted from extensive gene duplications. Among the nine Toll-like proteins, four are orthologous to Drosophila Toll. The presence of scavenger receptors and other related proteins indicates a role of cellular responses in the entire system. The structures of some antimicrobial peptides drastically differ from those in other orders of insects.ConclusionA framework of information on Tribolium immunity is established, which may serve as a stepping stone for future genetic analyses of defense responses in a nondrosophiline genetic model insect.


Journal of Invertebrate Pathology | 2010

Socialized medicine: Individual and communal disease barriers in honey bees

Jay D. Evans; Marla Spivak

Honey bees are attacked by numerous parasites and pathogens toward which they present a variety of individual and group-level defenses. In this review, we briefly introduce the many pathogens and parasites afflicting honey bees, highlighting the biology of specific taxonomic groups mainly as they relate to virulence and possible defenses. Second, we describe physiological, immunological, and behavioral responses of individual bees toward pathogens and parasites. Third, bees also show behavioral mechanisms for reducing the disease risk of their nestmates. Accordingly, we discuss the dynamics of hygienic behavior and other group-level behaviors that can limit disease. Finally, we conclude with several avenues of research that seem especially promising for understanding host-parasite relationships in bees and for developing breeding or management strategies for enhancing honey bee health. We discuss how human efforts to maintain healthy colonies intersect with similar efforts by the bees, and how bee management and breeding protocols can affect disease traits in the short and long term.


Trends in Microbiology | 2011

Bees brought to their knees: microbes affecting honey bee health

Jay D. Evans; Ryan S. Schwarz

The biology and health of the honey bee Apis mellifera has been of interest to human societies for centuries. Research on honey bee health is surging, in part due to new tools and the arrival of colony-collapse disorder (CCD), an unsolved decline in bees from parts of the United States, Europe, and Asia. Although a clear understanding of what causes CCD has yet to emerge, these efforts have led to new microbial discoveries and avenues to improve our understanding of bees and the challenges they face. Here we review the known honey bee microbes and highlight areas of both active and lagging research. Detailed studies of honey bee-pathogen dynamics will help efforts to keep this important pollinator healthy and will give general insights into both beneficial and harmful microbes confronting insect colonies.


BMC Genomics | 2014

Finding the missing honey bee genes: Lessons learned from a genome upgrade

Christine G. Elsik; Kim C. Worley; Anna K. Bennett; Martin Beye; Francisco Camara; Christopher P. Childers; Dirk C. de Graaf; Griet Debyser; Jixin Deng; Bart Devreese; Eran Elhaik; Jay D. Evans; Leonard J. Foster; Dan Graur; Roderic Guigó; Katharina Hoff; Michael Holder; Matthew E. Hudson; Greg J. Hunt; Huaiyang Jiang; Vandita Joshi; Radhika S. Khetani; Peter Kosarev; Christie Kovar; Jian Ma; Ryszard Maleszka; Robin F. A. Moritz; Monica Munoz-Torres; Terence Murphy; Donna M. Muzny

BackgroundThe first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes.ResultsHere, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data.ConclusionsLessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.


Insect Molecular Biology | 2006

Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera.

Diana E. Wheeler; N. A. Buck; Jay D. Evans

Female honeybees have two castes, queens and workers. Developmental fate is determined by larval diet. Coding sequences made available through the Honey Bee Genome Sequencing Consortium allow for a pathway‐based approach to understanding caste determination. We examined the expression of several genes of the insulin signalling pathway, which is central to regulation of growth based on nutrition. We found one insulin‐like peptide expressed at very high levels in queen but not worker larvae. Also, the gene for an insulin receptor was expressed at higher levels in queen larvae during the 2nd larval instar. These results demonstrate that the insulin pathway is a compelling candidate for pursing the relationship between diet and downstream signals involved in caste determination and differentiation.

Collaboration


Dive into the Jay D. Evans's collaboration.

Top Co-Authors

Avatar

Yanping Chen

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Jeffery S. Pettis

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Michele Hamilton

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Ryan S. Schwarz

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Humberto Boncristiani

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Jeff Pettis

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiang Huang

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Dawn Lopez

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Wenfeng Li

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge