Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay Gambetta is active.

Publication


Featured researches published by Jay Gambetta.


Nature | 2007

Coupling superconducting qubits via a cavity bus.

J. Majer; Jerry Chow; Jay Gambetta; Jens Koch; Blake Johnson; J. A. Schreier; Luigi Frunzio; David Schuster; Andrew Houck; A. Wallraff; Alexandre Blais; Michel H. Devoret; S. M. Girvin; R. J. Schoelkopf

Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine, and several examples of two-qubit interactions and gates have been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gate operations between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a ‘quantum bus’, which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity-induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.


Nature | 2009

Demonstration of two-qubit algorithms with a superconducting quantum processor

L. DiCarlo; Jerry Chow; Jay Gambetta; Lev S. Bishop; Blake Johnson; David Schuster; Johannes Majer; Alexandre Blais; Luigi Frunzio; S. M. Girvin; R. J. Schoelkopf

Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact—such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch–Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.


Nature | 2007

Resolving photon number states in a superconducting circuit

David Schuster; Andrew Houck; J. A. Schreier; A. Wallraff; Jay Gambetta; Alexandre Blais; Luigi Frunzio; J. Majer; Blake Johnson; Michel H. Devoret; S. M. Girvin; R. J. Schoelkopf

Electromagnetic signals are always composed of photons, although in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photons energy is usually not evident. However, by coupling a superconducting quantum bit (qubit) to signals on a microwave transmission line, it is possible to construct an integrated circuit in which the presence or absence of even a single photon can have a dramatic effect. Such a system can be described by circuit quantum electrodynamics (QED)—the circuit equivalent of cavity QED, where photons interact with atoms or quantum dots. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit could absorb and re-emit a single photon many times. Here we report a circuit QED experiment in the strong dispersive limit, a new regime where a single photon has a large effect on the qubit without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition energy can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability of finding the corresponding photon number in the cavity. This effect is used to distinguish between coherent and thermal fields, and could be used to create a photon statistics analyser. As no photons are absorbed by this process, it should be possible to generate non-classical states of light by measurement and perform qubit–photon conditional logic, the basis of a logic bus for a quantum computer.


Nature | 2010

Preparation and measurement of three-qubit entanglement in a superconducting circuit

L. DiCarlo; Matthew Reed; Luyan Sun; Blake Johnson; Jerry M. Chow; Jay Gambetta; Luigi Frunzio; S. M. Girvin; Michel H. Devoret; R. J. Schoelkopf

Traditionally, quantum entanglement has been central to foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can have results at odds with classical behaviour. These discrepancies grow exponentially with the number of entangled particles. With the ample experimental confirmation of quantum mechanical predictions, entanglement has evolved from a philosophical conundrum into a key resource for technologies such as quantum communication and computation. Although entanglement in superconducting circuits has been limited so far to two qubits, the extension of entanglement to three, eight and ten qubits has been achieved among spins, ions and photons, respectively. A key question for solid-state quantum information processing is whether an engineered system could display the multi-qubit entanglement necessary for quantum error correction, which starts with tripartite entanglement. Here, using a circuit quantum electrodynamics architecture, we demonstrate deterministic production of three-qubit Greenberger–Horne–Zeilinger (GHZ) states with fidelity of 88 per cent, measured with quantum state tomography. Several entanglement witnesses detect genuine three-qubit entanglement by violating biseparable bounds by 830 ± 80 per cent. We demonstrate the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of this encoding with decoding and error-correcting steps in a feedback loop will be the next step for quantum computing with integrated circuits.


Physical Review B | 2008

Suppressing charge noise decoherence in superconducting charge qubits

J. A. Schreier; Andrew Houck; Jens Koch; David Schuster; Blake Johnson; Jerry Chow; Jay Gambetta; J. Majer; Luigi Frunzio; Michel H. Devoret; S. M. Girvin; R. J. Schoelkopf

We present an experimental realization of the transmon qubit, which is an improved superconducting charge qubit derived from the Cooper pair box. We experimentally verify the predicted exponential suppression of sensitivity to


Physical Review Letters | 2008

Controlling the spontaneous emission of a superconducting transmon qubit

Andrew Houck; J. A. Schreier; Blake Johnson; Jerry Chow; Jens Koch; Jay Gambetta; David Schuster; Luigi Frunzio; Michel H. Devoret; S. M. Girvin; R. J. Schoelkopf

1∕f


Nature Communications | 2015

Demonstration of a quantum error detection code using a square lattice of four superconducting qubits

Antonio Corcoles; Easwar Magesan; Srikanth Srinivasan; Andrew W. Cross; Matthias Steffen; Jay Gambetta; Jerry M. Chow

charge noise. This removes the leading source of dephasing in charge qubits which results in homogeneously broadened transitions with relaxation and dephasing times in the microsecond range. Our systematic characterization of the qubit spectrum, anharmonicity, and charge dispersion shows excellent agreement with theory.


Nature Communications | 2014

Implementing a strand of a scalable fault-tolerant quantum computing fabric

Jerry M. Chow; Jay Gambetta; Easwar Magesan; David W. Abraham; Andrew W. Cross; Blake Johnson; Nicholas Masluk; Colm A. Ryan; John A. Smolin; Srikanth Srinivasan; Matthias Steffen

We present a detailed characterization of coherence in seven transmon qubits in a circuit QED architecture. We find that spontaneous emission rates are strongly influenced by far off-resonant modes of the cavity and can be understood within a semiclassical circuit model. A careful analysis of the spontaneous qubit decay into a microwave transmission-line cavity can accurately predict the qubit lifetimes over 2 orders of magnitude in time and more than an octave in frequency. Coherence times T1 and T_{2};{*} of more than a microsecond are reproducibly demonstrated.


Physical Review Letters | 2009

Simple pulses for elimination of leakage in weakly nonlinear qubits.

F. Motzoi; Jay Gambetta; Patrick Rebentrost; Frank K. Wilhelm

To build a fault-tolerant quantum computer, it is necessary to implement a quantum error correcting code. Such codes rely on the ability to extract information about the quantum error syndrome while not destroying the quantum information encoded in the system. Stabilizer codes are attractive solutions to this problem, as they are analogous to classical linear codes, have simple and easily computed encoding networks, and allow efficient syndrome extraction. In these codes, syndrome extraction is performed via multi-qubit stabilizer measurements, which are bit and phase parity checks up to local operations. Previously, stabilizer codes have been realized in nuclei, trapped-ions, and superconducting qubits. However these implementations lack the ability to perform fault-tolerant syndrome extraction which continues to be a challenge for all physical quantum computing systems. Here we experimentally demonstrate a key step towards this problem by using a twoby-two lattice of superconducting qubits to perform syndrome extraction and arbitrary error detection via simultaneous quantum non-demolition stabilizer measurements. This lattice represents a primitive tile for the surface code (SC), which is a promising stabilizer code for scalable quantum computing. Furthermore, we successfully show the preservation of an entangled state in the presence of an arbitrary applied error through high-fidelity syndrome measurement. Our results bolster the promise of employing lattices of superconducting qubits for larger-scale fault-tolerant quantum computing.The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.


Nature Physics | 2010

Quantum non-demolition detection of single microwave photons in a circuit

Blake Johnson; Matthew Reed; Andrew Houck; David Schuster; Lev S. Bishop; Eran Ginossar; Jay Gambetta; L. DiCarlo; Luigi Frunzio; S. M. Girvin; R. J. Schoelkopf

With favourable error thresholds and requiring only nearest-neighbour interactions on a lattice, the surface code is an error-correcting code that has garnered considerable attention. At the heart of this code is the ability to perform a low-weight parity measurement of local code qubits. Here we demonstrate high-fidelity parity detection of two code qubits via measurement of a third syndrome qubit. With high-fidelity gates, we generate entanglement distributed across three superconducting qubits in a lattice where each code qubit is coupled to two bus resonators. Via high-fidelity measurement of the syndrome qubit, we deterministically entangle the code qubits in either an even or odd parity Bell state, conditioned on the syndrome qubit state. Finally, to fully characterize this parity readout, we develop a measurement tomography protocol. The lattice presented naturally extends to larger networks of qubits, outlining a path towards fault-tolerant quantum computing.

Collaboration


Dive into the Jay Gambetta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre Blais

Canadian Institute for Advanced Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge