Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay L. Mellies is active.

Publication


Featured researches published by Jay L. Mellies.


Molecular Microbiology | 1999

The Per regulon of enteropathogenic Escherichia coli : identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)‐encoded regulator (Ler)

Jay L. Mellies; Simon J. Elliott; Vanessa Sperandio; Michael S. Donnenberg; James B. Kaper

Enteropathogenic Escherichia coli (EPEC) is the prototype organism of a group of pathogenic Gram‐negative bacteria that cause attaching and effacing (AE) intestinal lesions. All EPEC genes necessary for the AE phenotype are encoded within a 35.6 kb pathogenicity island termed the locus of enterocyte effacement (LEE). The LEE encodes 41 predicted open reading frames (ORFs), including components of a type III secretion apparatus and secreted molecules involved in the disruption of the host cell cytoskeleton. To initiate our studies on regulation of genes within the LEE, we determined the genetic organization of the LEE, defining transcriptional units and mapping transcriptional start points. We found that components of the type III secretion system are transcribed from three polycistronic operons designated LEE1, LEE2 and LEE3. The secreted Esp molecules are part of a fourth polycistronic operon designated LEE4. Using reporter gene fusion assays, we found that the previously described plasmid‐encoded regulator (Per) activated operons LEE1, LEE2 and LEE3, and modestly increased the expression of LEE4 in EPEC. Using single‐copy lacZ fusions in K‐12‐derived strains, we determined that Per only directly activated the LEE1::lacZ fusion, and did not directly activate the other operons. Orf1 of the LEE1 operon activated the expression of single‐copy LEE2::lacZ and LEE3::lacZ fusions in trans and modestly increased the expression of LEE4::lacZ in K‐12 strains. Orf1 was therefore designated Ler, for LEE‐encoded regulator. Thus, the four polycistronic operons of the LEE that encode type III secretion components and secreted molecules are now included in the Per regulon, where Ler participates in this novel regulatory cascade in EPEC.


Infection and Immunity | 2000

The Locus of Enterocyte Effacement (LEE)-Encoded Regulator Controls Expression of Both LEE- and Non-LEE-Encoded Virulence Factors in Enteropathogenic and Enterohemorrhagic Escherichia coli

Simon J. Elliott; Vanessa Sperandio; Jorge A. Girón; Sooan Shin; Jay L. Mellies; Leslie A. Wainwright; Steven W. Hutcheson; Timothy K. McDaniel; James B. Kaper

ABSTRACT Regulation of virulence gene expression in enteropathogenicEscherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) is incompletely understood. In EPEC, the plasmid-encoded regulator Per is required for maximal expression of proteins encoded on the locus of enterocyte effacement (LEE), and a LEE-encoded regulator (Ler) is part of the Per-mediated regulatory cascade upregulating the LEE2, LEE3, andLEE4 promoters. We now report that Ler is essential for the expression of multiple LEE-located genes in both EPEC and EHEC, including those encoding the type III secretion pathway, the secreted Esp proteins, Tir, and intimin. Ler is therefore central to the process of attaching and effacing (AE) lesion formation. Ler also regulates the expression of LEE-located genes not required for AE-lesion formation, including rorf2, orf10,rorf10, orf19, and espF, indicating that Ler regulates additional virulence properties. In addition, Ler regulates the expression of proteins encoded outside the LEE that are not essential for AE lesion formation, including TagA in EHEC and EspC in EPEC. Δler mutants of both EPEC and EHEC show altered adherence to epithelial cells and express novel fimbriae. Ler is therefore a global regulator of virulence gene expression in EPEC and EHEC.


Molecular Microbiology | 2002

Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic Escherichia coli.

Simon J. Elliott; Steven W. Hutcheson; Maria S. Dubois; Jay L. Mellies; Leslie A. Wainwright; Miranda Batchelor; Gad Frankel; Stuart Knutton; James B. Kaper

The locus of enterocyte effacement of enteropathogenic Escherichia coli encodes a type III secretion system, an outer membrane protein adhesin (intimin, the product of eae ) and Tir, a translocated protein that becomes a host cell receptor for intimin. Many type III secreted proteins require chaperones, which function to stabilize proteins, prevent inappropriate protein–protein interactions and aid in secretion. An open reading frame located between tir and eae, previously named orfU, was predicted to encode a protein with partial similarity to the Yersinia SycH chaperone. We examined the potential of the orfU gene product to serve as a chaperone for Tir. The orfU gene encoded a 15 kDa cytoplasmic protein that specifically interacted with Tir as demonstrated by the yeast two‐hybrid assay, column binding and coimmunoprecipitation experiments. An orfU mutant was defective in attaching–effacing lesion formation and Tir secretion, but was unaffected in expression of other virulence factors. OrfU appeared to stabilize Tir levels in the cytoplasm, but was not absolutely necessary for secretion of Tir. Based upon the physical similarities, phenotypic characteristics and the demonstrated interaction with Tir, orfU is redesignated as cesT for the chaperone for E. coli secretion of T ir.


Infection and Immunity | 2007

Enteropathogenic and Enterohemorrhagic Escherichia coli Virulence Gene Regulation

Jay L. Mellies; Alex M. S. Barron; Anna M. Carmona

Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) cause significant morbidity and mortality worldwide (18, 60, 63). Though these E. coli pathotypes are genetically related, many features of their epidemiology, their pathogenesis, and the niches they occupy within the human host are unique. EPEC causes profuse watery diarrhea, primarily in children under the age of 2 years, and mostly affects individuals residing in developing countries. In contrast, adults and children infected by EHEC bacteria can suffer from either bloody or nonbloody diarrhea, and in a small percentage of cases a life-threatening complication known as hemolytic uremic syndrome (HUS) occurs. Many patients with HUS experience long-term renal damage, and they often require dialysis or kidney transplantation. EHEC produces Shiga toxins (Stx), which can cause damage to renal endothelial cells, resulting in HUS, while EPEC bacteria do not possess stx (72). EHEC disease appears in primarily industrialized nations yet causes fewer disease outbreaks in developing countries. This observation has been anecdotally attributed to immunological cross-protection from the related EPEC bacteria prevalent in the less developed regions of the world. There are two additional important differences that distin


Infection and Immunity | 2001

EspG, a Novel Type III System-Secreted Protein from Enteropathogenic Escherichia coli with Similarities to VirA of Shigella flexneri

Simon J. Elliott; Efrosinia O. Krejany; Jay L. Mellies; Roy M. Robins-Browne; Chihiro Sasakawa; James B. Kaper

ABSTRACT The function of the rorf2 gene located on the locus of enterocyte effacement (LEE) pathogenicity island of enteropathogenicEscherichia coli (EPEC) has not been described. We report that rorf2 encodes a novel protein, named EspG, which is secreted by the type III secretory system and which is translocated into host epithelial cells. EspG is homologous withShigella flexneri protein VirA, and the clonedespG (rorf2) gene can rescue invasion in a Shigella virA mutant, indicating that these proteins are functionally equivalent in Shigella. An EPECespG mutant had no apparent defects in in vitro assays of virulence phenotypes, but a rabbit diarrheagenic E. coli strain carrying a mutant espG showed diminished intestinal colonization and yet diarrheal attack rates similar to those of the wild type. A second EspG homolog, Orf3, is encoded on the EspC pathogenicity islet. The clonedorf3 gene could also rescue invasion in aShigella virA mutant, but an EPEC espG orf3 double mutant was not diminished in any tested in vitro assays for EPEC virulence factors. Our results indicate that EspG plays an accessory but as yet undefined role in EPEC virulence that may involve intestinal colonization.


Infection and Immunity | 2001

espC Pathogenicity Island of Enteropathogenic Escherichia coli Encodes an Enterotoxin

Jay L. Mellies; Fernando Navarro-Garcia; Iruka N. Okeke; Julie Frederickson; James P. Nataro; James B. Kaper

ABSTRACT At least five proteins are secreted extracellularly by enteropathogenic Escherichia coli (EPEC), a leading cause of infant diarrhea in developing countries. However only one, EspC, is known to be secreted independently of the type III secretion apparatus encoded by genes located within the 35.6-kb locus of enterocyte effacement pathogenicity island. EspC is a member of the autotransporter family of proteins, and the secreted portion of the molecule is 110 kDa. Here we determine that the espC gene is located within a second EPEC pathogenicity island at 60 min on the chromosome of E. coli. We also show that EspC is an enterotoxin, indicated by rises in short-circuit current and potential difference in rat jejunal tissue mounted in Ussing chambers. In addition, preincubation with antiserum against the homologous Pet enterotoxin of enteroaggregative E. coli eliminated EspC enterotoxin activity. Like the EAF plasmid, the espCpathogenicity island was found only in a subset of EPEC, suggesting that EspC may play a role as an accessory virulence factor in some but not all EPEC strains.


Infection and Immunity | 2003

Interaction of Ler at the LEE5 (tir) Operon of Enteropathogenic Escherichia coli

Kenneth R. Haack; Christopher L. Robinson; Kristie J. Miller; Jonathan W. Fowlkes; Jay L. Mellies

ABSTRACT The genome of enteropathogenic Escherichia coli (EPEC) encodes a global regulator, Ler (locus of enterocyte effacement [LEE]-encoded regulator), which activates expression of several polycistronic operons within the 35.6-kb LEE pathogenicity island, including the LEE2-LEE3 divergent operon pair containing overlapping −10 regions and the LEE5 (tir) operon. Ler is a predicted 15-kDa protein that exhibits amino acid similarity with the nucleoid protein H-NS. In order to study Ler-mediated activation of virulence operons in EPEC, we used a molecular approach to characterize the interactions of purified Ler protein with the upstream regulatory sequences of the LEE5 operon. We determined the cis-acting DNA sequences necessary for Ler binding at LEE5 by mobility shift and DNase I protection assays, demonstrating that Ler acts directly at LEE5 by binding sequences between positions −190 and −73 in relation to the transcriptional start site. Based on the molecular weight of Ler, the similarity to H-NS, and the extended region of protection observed in a DNase I footprint at LEE5, we hypothesized that multiple Ler proteins bind upstream of the LEE5 promoter to increase transcriptional activity from a distance. Using an hns deletion strain, we demonstrated that like the LEE2-LEE3 operon pair, H-NS represses LEE5 transcription. We describe a model in which Ler activates transcription at both divergent overlapping paired and single promoters by displacing H-NS, which results in the disruption of a repressing nucleoprotein complex.


Infection and Immunity | 2001

Comparative sequence analysis of the plasmid-encoded regulator of enteropathogenic Escherichia coli strains

Iruka N. Okeke; Jade A. Borneman; Sooan Shin; Jay L. Mellies; Laura E. Quinn; James B. Kaper

ABSTRACT Enteropathogenic Escherichia coli (EPEC) strains that carry the EPEC adherence factor (EAF) plasmid were screened for the presence of different EAF sequences, including those of the plasmid-encoded regulator (per). Considerable variation in gene content of EAF plasmids from different strains was seen. However,bfpA, the gene encoding the structural subunit for the bundle-forming pilus, bundlin, and per genes were found in 96.8% of strains. Sequence analysis of the per operon and its promoter region from 15 representative strains revealed that it is highly conserved. Most of the variation occurs in the 5′ two-thirds of the perA gene. In contrast, the C-terminal portion of the predicted PerA protein that contains the DNA-binding helix-turn-helix motif is 100% conserved in all strains that possess a full-length gene. In a minority of strains including the O119:H2 and canine isolates and in a subset of O128:H2 and O142:H6 strains, frameshift mutations in perA leading to premature truncation and consequent inactivation of the gene were identified. Cloned perA, -B, and -C genes from these strains, unlike those from strains with a functional operon, failed to activate the LEE1 operon and bfpAtranscriptional fusions or to complement a per mutant in reference strain E2348/69. Furthermore, O119, O128, and canine strains that carry inactive per operons were deficient in virulence protein expression. The context in which the perABC operon occurs on the EAF plasmid varies. The sequence upstream of theper promoter region in EPEC reference strains E2348/69 and B171-8 was present in strains belonging to most serogroups. In a subset of O119:H2, O128:H2, and O142:H6 strains and in the canine isolate, this sequence was replaced by an IS1294-homologous sequence.


Infection and Immunity | 2006

The Global Regulator Ler Is Necessary for Enteropathogenic Escherichia coli Colonization of Caenorhabditis elegans

Jay L. Mellies; Alex M. S. Barron; Kenneth R. Haack; Andrew S. Korson; Derek A. Oldridge

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is an important cause of infant diarrhea in developing countries and is useful for general investigations of the bacterial infection process. However, the study of the molecular pathogenesis of EPEC has been hampered by the lack of genetically tractable, convenient animal models. We have therefore developed the use of the nematode Caenorhabditis elegans as a small animal model of infection for this diarrheal pathogen. We found that nematodes died faster on nematode growth medium in the presence of EPEC pathogens than in the presence of the laboratory control strain MG1655. Increased numbers of pathogens in the gut, determined by standard plate count assays and fluorescence microscopy using green fluorescent protein-expressing bacteria, correlated with killing. Deletion of the gene encoding the global regulator Ler severely reduced the ability of EPEC to colonize the nematode gut and could be complemented by providing the ler gene on a multicopy plasmid in trans. Neither the type III secretion system nor the type IV bundle-forming pilus was required for colonization. Combined, the similarities and distinct differences between EPEC infection of nematodes and that of humans offer a unique opportunity to study several stages of the infection process, namely, attachment, colonization, and persistence, in a genetically tractable, inexpensive, and convenient in vivo system.


Proceedings of the National Academy of Sciences of the United States of America | 1999

Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli

Vanessa Sperandio; Jay L. Mellies; William Nguyen; Sooan Shin; James B. Kaper

Collaboration


Dive into the Jay L. Mellies's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sooan Shin

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge