Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay L. Nadeau is active.

Publication


Featured researches published by Jay L. Nadeau.


Applied and Environmental Microbiology | 2005

Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms

J. A. Kloepfer; Randall E. Mielke; Jay L. Nadeau

ABSTRACT Quantum dots (QDs) rendered water soluble for biological applications are usually passivated by several inorganic and/or organic layers in order to increase fluorescence yield. However, these coatings greatly increase the size of the particle, making uptake by microorganisms impossible. We find that adenine- and AMP-conjugated QDs are able to label bacteria only if the particles are <5 nm in diameter. Labeling is dependent upon purine-processing mechanisms, as mutants lacking single enzymes demonstrate a qualitatively different signal than do wild-type strains. This is shown for two example species, one gram negative and one gram positive. Wild-type Bacillus subtilis incubated with QDs conjugated to adenine are strongly fluorescent; very weak signal is seen in mutant cells lacking either adenine deaminase or adenosine phosphoribosyltransferase. Conversely, QD-AMP conjugates label mutant strains more efficiently than the wild type. In Escherichia coli, QD conjugates are taken up most strongly by adenine auxotrophs and are extruded from the cells over a time course of hours. No fluorescent labeling is seen in killed bacteria or in the presence of EDTA or an excess of unlabeled adenine, AMP, or hypoxanthine. Spectroscopy and electron microscopy suggest that QDs of <5 nm can enter the cells whole, probably by means of oxidative damage to the cell membrane which is aided by light.


Applied and Environmental Microbiology | 2003

Quantum Dots as Strain- and Metabolism-Specific Microbiological Labels

J. A. Kloepfer; Randall E. Mielke; Michael S. Wong; Kenneth H. Nealson; Galen D. Stucky; Jay L. Nadeau

ABSTRACT Biologically conjugated quantum dots (QDs) have shown great promise as multiwavelength fluorescent labels for on-chip bioassays and eukaryotic cells. However, use of these photoluminescent nanocrystals in bacteria has not previously been reported, and their large size (3 to 10 nm) makes it unclear whether they inhibit bacterial recognition of attached molecules and whether they are able to pass through bacterial cell walls. Here we describe the use of conjugated CdSe QDs for strain- and metabolism-specific microbial labeling in a wide variety of bacteria and fungi, and our analysis was geared toward using receptors for a conjugated biomolecule that are present and active on the organisms surface. While cell surface molecules, such as glycoproteins, make excellent targets for conjugated QDs, internal labeling is inconsistent and leads to large spectral shifts compared with the original fluorescence, suggesting that there is breakup or dissolution of the QDs. Transmission electron microscopy of whole mounts and thin sections confirmed that bacteria are able to extract Cd and Se from QDs in a fashion dependent upon the QD surface conjugate.


Nanotechnology | 2015

Targeting B16 tumors in vivo with peptide-conjugated gold nanoparticles.

Wilson Poon; Xuan Zhang; Devesh Bekah; Jose G. Teodoro; Jay L. Nadeau

This study examines the effects of polyethylene glycol (PEG) and peptide conjugation on the biodistribution of ultrasmall (2.7 nm) gold nanoparticles in mice bearing B16 melanoma allografts. Nanoparticles were delivered intravenously, and biodistribution was measured at specific timepoints by organ digestion and inductively coupled plasma mass spectrometry. All major organs were examined. Two peptides were tested: the cyclic RGD peptide (cRGD, which targets integrins); and a recently described peptide derived from the myxoma virus. We found the greatest specific tumor delivery using the myxoma peptide, with or without PEGylation. Un-PEGylated cRGD performed poorly, but PEGylated RGD showed a significant transient collection in the tumor. Liver and kidney were the primary targets of all constructs. None of the particles were able to cross the blood-brain barrier. Although it was able to deliver Au to B16 cells, the myxoma peptide did not show any cytotoxic activity against these cells, in contrast to previous reports. These results indicate that the effect of passive targeting by PEGylation and active targeting by peptides can be independent or combined, and that they should be evaluated on a case-by-case basis when designing new nanosystems for targeted therapies. Both myxoma peptide and cRGD should be considered for specific targeting to melanoma, but a thorough investigation of the cytotoxicity of the myxoma peptide to different cell lines remains to be performed.


Nanoscale | 2011

Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation

Hicham Chibli; Lina Carlini; Soonhyang Park; Nada M. Dimitrijevic; Jay L. Nadeau

Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.


Bioconjugate Chemistry | 2011

Ultrasmall gold-doxorubicin conjugates rapidly kill apoptosis-resistant cancer cells.

Xuan Zhang; Hicham Chibli; Randall E. Mielke; Jay L. Nadeau

Ultrasmall (mean diameter, 2.7 nm) gold nanoparticles conjugated to doxorubicin (Au-Dox) are up to 20-fold more cytotoxic to B16 melanoma cells than the equivalent concentration of doxorubicin alone, and act up to six times more quickly. Ultrasmall Au-Dox enters the cell endocytic vesicles and is also seen free in the cytoplasm and nuclei. This is in distinct contrast to larger particles reported in previous studies, which are excluded from the nucleus and which show no increased toxicity over Dox alone. Cell death with Au-Dox is confirmed to be apoptotic by TUNEL staining and ultrastructural examination using transmission electron microscopy. To further explore the mechanism of action, two other cell lines were examined: HeLa cells which are highly sensitive to Dox, and HeLa cells overexpressing Bcl-2 which show impaired apoptosis and Dox resistance. Interestingly, the Dox-sensitive cells show a slightly decreased sensitivity to Au-Dox relative to Dox alone, whereas the Dox-resistant cells are not resistant to Au-Dox. These results have implications for the design of chemotherapeutic nanoparticles, suggesting that it is possible to selectively target apoptosis-resistant cancer cells while at the same time reducing cytotoxicity to normal cells.


Bioconjugate Chemistry | 2008

Effect of ligand density on the spectral, physical, and biological characteristics of CdSe/ZnS quantum dots.

Samuel J. Clarke; C. A. Hollmann; Faisal A. Aldaye; Jay L. Nadeau

Chemical modification of the surface of CdSe/ZnS quantum dots (QDs) with small molecules or functional ligands often alters the characteristics of these particles. For instance, dopamine conjugation quenches the fluorescence of the QDs, which is a property that can be exploited for sensing applications if the conjugates are taken up into living cells. However, different sizes and/or preparations of mercaptocarboxylic acid solubilized QDs show very different properties when incubated with cells. It is unknown what physical parameters determine a QDs ability to interact with a cell surface, be endocytosed, escape from endosomes, and/or enter the nucleus. In this study, we examine the surface chemistry of QD-dopamine conjugates and present an optimized method for tracking the attachment of small biomolecules to the surface. It is found that the fluorescence intensity, surface charge, colloidal stability, and biological interactions of the QDs vary as a function of the density of dopamine on the surface. Successful targeting of QD-dopamine to dopamine receptor positive PC12 cells correlates with greater homogeneity of particle thiol layer, and a minimum number of ligands required for specific association can be estimated. These results will enable users to develop methods for screening QD conjugates for biological activity before proceeding to experiments with cell lines and animals.


IEEE Transactions on Nanobioscience | 2009

Toxicity of CdTe Quantum Dots in Bacterial Strains

Eve-Marei Dumas; Val ery Ozenne; Randall E. Mielke; Jay L. Nadeau

Contradictory results on quantum dot cytotoxicity exist for many types of biological systems, especially microorganisms. In this study, we compare the cytotoxicity of CdTe quantum dots (QDs) to four very different environmental bacterial strains, giving quantitative models of the growth curves for exposed organisms. The mechanisms of toxicity are explored by measuring reactive oxygen species generation by the QDs alone and investigating the oxidative damage to mutant bacteria especially sensitive to ROS. Electron microscopic examination also reveals factors that may contribute to resistance to nanoparticles in some strains.


Toxicology and Applied Pharmacology | 2013

Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells

Song Tang; Qingsong Cai; Hicham Chibli; Vinay Allagadda; Jay L. Nadeau; Gregory D. Mayer

Increasing use of quantum dots (QDs) makes it necessary to evaluate their toxicological impacts on aquatic organisms, since their contamination of surface water is inevitable. This study compares the genotoxic effects of ionic Cd versus CdTe nanocrystals in zebrafish hepatocytes. After 24h of CdSO4 or CdTe QD exposure, zebrafish liver (ZFL) cells showed a decreased number of viable cells, an accumulation of Cd, an increased formation of reactive oxygen species (ROS), and an induction of DNA strand breaks. Measured levels of stress defense and DNA repair genes were elevated in both cases. However, removal of bulky DNA adducts by nucleotide excision repair (NER) was inhibited with CdSO4 but not with CdTe QDs. The adverse effects caused by acute exposure of CdTe QDs might be mediated through differing mechanisms than those resulting from ionic cadmium toxicity, and studying the effects of metallic components may be not enough to explain QD toxicities in aquatic organisms.


Frontiers in chemistry | 2014

Gold nanoparticles and their alternatives for radiation therapy enhancement

Daniel R. Cooper; Devesh Bekah; Jay L. Nadeau

Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy (PDT). Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.


Physical Chemistry Chemical Physics | 2009

Photoenhancement of lifetimes in CdSe/ZnS and CdTe quantum dot-dopamine conjugates

Daniel R. Cooper; Diana Suffern; Lina Carlini; Samuel J. Clarke; Rupesh Parbhoo; Stephen E. Bradforth; Jay L. Nadeau

The response of water-soluble, mercaptocarboxylic acid-capped fluorescent semiconductor nanoparticles, or quantum dots (QDs), to extended visible-light irradiation is variable and poorly described. Here we use time-resolved spectroscopy to investigate the photoluminescence intensities and lifetimes of CdSe/ZnS and CdTe QDs as a function of blue light illumination. Conjugates of the particles to the electron donor dopamine were also investigated, and the effect of the antioxidant beta-mercaptoethanol was explored. Both types of QD showed signs of direct electron transfer to the conjugate, but enhancement was much more pronounced in CdSe/ZnS. A model of the two different types of enhancement is proposed.

Collaboration


Dive into the Jay L. Nadeau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen E. Bradforth

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Lindensmith

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugene Serabyn

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar

Manuel Bedrossian

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Randall E. Mielke

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge