Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay Moore is active.

Publication


Featured researches published by Jay Moore.


NeuroImage | 2013

Quantitative magnetization transfer imaging of human brain at 7 T

Richard D. Dortch; Jay Moore; Ke Li; Marcin Jankiewicz; Daniel F. Gochberg; Jane A.T. Hirtle; John C. Gore; Seth A. Smith

Quantitative magnetization transfer (qMT) imaging yields indices describing the interactions between free water protons and immobile macromolecular protons. These indices include the macromolecular to free pool size ratio (PSR), which has been shown to be correlated with myelin content in white matter. Because of the long scan times required for whole-brain imaging (≈20-30 min), qMT studies of the human brain have not found widespread application. Herein, we investigated whether the increased signal-to-noise ratio available at 7.0 T could be used to reduce qMT scan times. More specifically, we developed a selective inversion recovery (SIR) qMT imaging protocol with a i) novel transmit radiofrequency (B(1)(+)) and static field (B(0)) insensitive inversion pulse, ii) turbo field-echo readout, and iii) reduced TR. In vivo qMT data were obtained in the brains of healthy volunteers at 7.0 T using the resulting protocol (scan time≈40 s/slice, resolution=2 × 2 × 3 mm(3)). Reliability was also assessed in repeated acquisitions. The results of this study demonstrate that SIR qMT imaging can be reliably performed within the radiofrequency power restrictions present at 7.0 T, even in the presence of large B(1)(+) and B(0) inhomogeneities. Consistent with qMT studies at lower field strengths, the observed PSR values were higher in white matter (mean±SD=17.6 ± 1.3%) relative to gray matter (10.3 ± 1.6%) at 7.0 T. In addition, regional variations in PSR were observed in white matter. Together, these results suggest that qMT measurements are feasible at 7.0 T and may eventually allow for the high-resolution assessment of changes in composition throughout the normal and diseased human brain in vivo.


Journal of Magnetic Resonance | 2010

Composite RF pulses for B1+-insensitive volume excitation at 7 Tesla

Jay Moore; Marcin Jankiewicz; Huairen Zeng; Adam W. Anderson; John C. Gore

A new class of composite RF pulses that perform well in the presence of specific ranges of B0 and B1+ inhomogeneities has been designed for volume (non-selective) excitation in MRI. The pulses consist of numerous (approximately 100) short (approximately 10 micros) block-shaped sub-pulses each with different phases and amplitudes derived from numerical optimization. Optimized pulses are designed to be effective over a specific range of frequency offsets and transmit field variations and are thus implementable regardless of field strength, transmit coil configuration, or the subject-specific spatial distribution of the static and RF fields. In the context of 7 T human brain imaging, both simulations and phantom experiments indicate that optimized pulses result in similar on-resonance flip-angle uniformity as BIR-4 pulses but with the advantages of superior off-resonance stability and significantly reduced average power. The pulse design techniques presented here are thus well-suited for practical application in ultra-high field human MRI.


Journal of Magnetic Resonance | 2012

Evaluation of non-selective refocusing pulses for 7 T MRI

Jay Moore; Marcin Jankiewicz; Adam W. Anderson; John C. Gore

There is a continuing need for improved RF pulses that achieve proper refocusing in the context of ultra-high field (≥ 7 T) human MRI. Simple block or sinc pulses are highly susceptible to RF field inhomogeneities, and adiabatic pulses are generally considered too SAR intensive for practical use at 7 T. The performance of the array of pulses falling between these extremes, however, has not been systematically evaluated. The aim of this work was to compare the performances of 21 non-selective refocusing pulses spanning a range of durations and SAR levels. The evaluation was based upon simulations and both phantom and in vivo human brain experiments conducted at 7 T. Tested refocusing designs included block, composite block, BIR-4, hyperbolic secant, and numerically optimized composite waveforms. These pulses were divided into three SAR classes and two duration categories, and, based on signal gain in a 3-D spin echo sequence, practical recommendations on usage are made within each category. All evaluated pulses were found to produce greater volume-averaged signals relative to a 180° block pulse. Although signal gains often come with the price of increased SAR or duration, some pulses were found to result in significant signal enhancement while also adhering to practical constraints. This work demonstrates the signal gains and losses realizable with single-channel refocusing pulse designs and should assist in the selection of suitable refocusing pulses for practical 3-D spin-echo imaging at 7 T. It further establishes a reference against which future pulses and multi-channel designs can be compared.


Magnetic Resonance Imaging | 2013

A comparison and evaluation of reduced-FOV methods for multi-slice 7T human imaging.

Christopher J. Wargo; Jay Moore; John C. Gore

Eight different reduced field-of-view (FOV) MRI techniques suitable for high field human imaging were implemented, optimized, and evaluated at 7T. These included selective Inner-Volume Imaging (IVI) based methods, and Outer-Volume Suppression (OVS) techniques, some of which were previously unexplored at ultra-high fields. Design considerations included use of selective composite excitation and adiabatic refocusing radio-frequency (RF) pulses to address B1 inhomogeneities, twice-refocused spin echo techniques, frequency-modulated pulses to sharply define suppressed regions, and pulse sequence designs to improve SNR in multi-slice scans. The different methods were quantitatively compared in phantoms and in vivo human brain images to provide measurements of relative signal to noise ratio (SNR), power deposition (specific absorption rate, SAR), suppression of signal, artifact strength and prevalence, and general image quality. Multi-slice signal losses in out-of-slice locations were simulated for IVI methods, and then measured experimentally across a range of slice numbers. Corrections for B1 nonuniformities demonstrated an improved SNR and a reduction in artifact power in the reduced-FOV, but produced an elevated SAR. Multi-slice sequences with reordering of pulses in traditional and twice-refocused IVI techniques demonstrated an improved SNR compared to conventional methods. The combined results provide a basis for use of reduced-FOV techniques for human imaging localized to a small FOV at 7T.


PLOS ONE | 2013

On the Origins of Signal Variance in FMRI of the Human Midbrain at High Field

Robert L. Barry; Mariam Coaster; Baxter P. Rogers; Allen T. Newton; Jay Moore; Adam W. Anderson; David H. Zald; John C. Gore

Functional Magnetic Resonance Imaging (fMRI) in the midbrain at 7 Tesla suffers from unexpectedly low temporal signal to noise ratio (TSNR) compared to other brain regions. Various methodologies were used in this study to quantitatively identify causes of the noise and signal differences in midbrain fMRI data. The influence of physiological noise sources was examined using RETROICOR, phase regression analysis, and power spectral analyses of contributions in the respiratory and cardiac frequency ranges. The impact of between-shot phase shifts in 3-D multi-shot sequences was tested using a one-dimensional (1-D) phase navigator approach. Additionally, the effects of shared noise influences between regions that were temporally, but not functionally, correlated with the midbrain (adjacent white matter and anterior cerebellum) were investigated via analyses with regressors of ‘no interest’. These attempts to reduce noise did not improve the overall TSNR in the midbrain. In addition, the steady state signal and noise were measured in the midbrain and the visual cortex for resting state data. We observed comparable steady state signals from both the midbrain and the cortex. However, the noise was 2–3 times higher in the midbrain relative to the cortex, confirming that the low TSNR in the midbrain was not due to low signal but rather a result of large signal variance. These temporal variations did not behave as known physiological or other noise sources, and were not mitigated by conventional strategies. Upon further investigation, resting state functional connectivity analysis in the midbrain showed strong intrinsic fluctuations between homologous midbrain regions. These data suggest that the low TSNR in the midbrain may originate from larger signal fluctuations arising from functional connectivity compared to cortex, rather than simply reflecting physiological noise.


Journal of Magnetic Resonance | 2012

Slice-selective excitation with -insensitive composite pulses

Jay Moore; Marcin Jankiewicz; Adam W. Anderson; John C. Gore

Spatially selective excitation pulses have been designed to produce uniform flip angles in the presence of the RF and static field inhomogeneities typically encountered in MRI studies of the human brain at 7 T. Pulse designs are based upon non-selective, composite pulses numerically optimized for the desired performance over prescribed ranges of field inhomogeneities. The non-selective pulses are subsequently transformed into spatially selective pulses with the same field-insensitive properties through modification of the spectral composition of the individual sub-pulses which are then executed in conjunction with an oscillating gradient waveform. An in-depth analysis of the performance of these RF pulses is presented in terms of total pulse durations, slice profiles, linearity of in-slice magnetization phase, sensitivity to RF and static field variations, and signal loss due to T(2) effects. Both simulations and measurements in phantoms and in the human brain are used to evaluate pulses with nominal flip angles of 45° and 90°. Target slice thickness in all cases is 2mm. Results indicate that the described class of field-insensitive RF pulses is capable of improving flip-angle uniformity in 7 T human brain imaging. There appears to be a subset of pulses with durations ≲10 ms for which non-linearities in the magnetization phase are minimal and signal loss due to T(2) decay is not prohibitive. Such pulses represent practical solutions for achieving uniform flip angles in the presence of the large field inhomogeneities common to high-field human imaging and help to better establish the performance limits of high-field imaging systems with single-channel transmission.


Magnetic Resonance in Medicine | 2014

7 Tesla MRI with a transmit/receive loopless antenna and B1-insensitive selective excitation

M. Arcan Ertürk; Abdel Monem M El-Sharkawy; Jay Moore; Paul A. Bottomley

Use of external coils with internal detectors or conductors is challenging at 7 Tesla (T) due to radiofrequency (RF) field (B1) penetration, B1‐inhomogeneity, mutual coupling, and potential local RF heating. The present study tests whether the near‐quadratic gains in signal‐to‐noise ratio and field‐of‐view with field‐strength previously reported for internal loopless antennae at 7T can suffice to perform MRI with an interventional transmit/receive antenna without using any external coils.


Journal of Magnetic Resonance | 2012

Double tuning a single input probe for heteronuclear NMR spectroscopy at low field.

Sasidhar Tadanki; Raul D. Colon; Jay Moore; Kevin W. Waddell

Applications of PASADENA in biomedicine are continuing to emerge due to recent demonstrations that hyperpolarized metabolic substrates and the corresponding reaction products persist sufficiently long to be detected in vivo. Biomedical applications of PASADENA typically differ from their basic science counterparts in that the polarization endowed by addition of parahydrogen is usually transferred from nascent protons to coupled storage nuclei for subsequent detection on a higher field imaging instrument. These pre-imaging preparations usually take place at low field, but commercial spectrometers capable of heteronuclear pulsed NMR at frequencies in the range of 100 kHz to 1 MHz are scarce though, in comparison to single channel consoles in that field regime. Reported here is a probe circuit that can be used in conjunction with a phase and amplitude modulation scheme we have developed called PANORAMIC (Precession And Nutation for Observing Rotations At Multiple Intervals about the Carrier), that expands a single channel console capability to double or generally multiple resonance with minimal hardware modifications. The demands of this application are geared towards uniform preparation, and since the hyperpolarized molecules are being detected externally at high field, detection sensitivity is secondary to applied field uniformity over a large reaction volume to accommodate heterogeneous chemistry of gas molecules at a liquid interface. The probe circuit was therefore configured with a large (40 mL) Helmholtz sample coil for uniformity, and double-tuned to the Larmor precession frequencies of (13)C/(1)H (128/510 kHz) within a custom solenoidal electromagnet at a static field of 12 mT. Traditional (on-resonant) as well as PANORAMIC NMR signals with signal to noise ratios of approximately 75 have been routinely acquired with this probe and spectrometer setup from 1024 repetitions on the high frequency channel. The proton excitation pulse width was 240 μs at 6.31 W, compared to a carbon-13 pulse width of 220 μs at 2.51 W. When PANORAMIC refocusing waveforms were transmitted at a carrier frequency of 319 kHz, integrated signal intensities from a spin-echo sequence at both proton (510 kHz) and carbon-13 (128 kHz) frequencies were within experimental error to block pulse analogs transmitted on resonance. We anticipate that this probe circuit design could be extended to higher and lower frequencies, and that when used in conjunction with PANORAMIC phase and amplitude modulated arrays, will enable low field imaging consoles to serve as multinuclear consoles.


Journal of Magnetic Resonance | 2010

Composite RF pulses for -insensitive volume excitation at 7Tesla

Jay Moore; Marcin Jankiewicz; Huairen Zeng; Adam W. Anderson; John C. Gore

A new class of composite RF pulses that perform well in the presence of specific ranges of B0 and B1+ inhomogeneities has been designed for volume (non-selective) excitation in MRI. The pulses consist of numerous (approximately 100) short (approximately 10 micros) block-shaped sub-pulses each with different phases and amplitudes derived from numerical optimization. Optimized pulses are designed to be effective over a specific range of frequency offsets and transmit field variations and are thus implementable regardless of field strength, transmit coil configuration, or the subject-specific spatial distribution of the static and RF fields. In the context of 7 T human brain imaging, both simulations and phantom experiments indicate that optimized pulses result in similar on-resonance flip-angle uniformity as BIR-4 pulses but with the advantages of superior off-resonance stability and significantly reduced average power. The pulse design techniques presented here are thus well-suited for practical application in ultra-high field human MRI.


Journal of Magnetic Resonance | 2010

Composite RF pulses for volume excitation at 7 Tesla

Jay Moore; Marcin Jankiewicz; Huairen Zeng; Adam W. Anderson; John C. Gore

A new class of composite RF pulses that perform well in the presence of specific ranges of B0 and B1+ inhomogeneities has been designed for volume (non-selective) excitation in MRI. The pulses consist of numerous (approximately 100) short (approximately 10 micros) block-shaped sub-pulses each with different phases and amplitudes derived from numerical optimization. Optimized pulses are designed to be effective over a specific range of frequency offsets and transmit field variations and are thus implementable regardless of field strength, transmit coil configuration, or the subject-specific spatial distribution of the static and RF fields. In the context of 7 T human brain imaging, both simulations and phantom experiments indicate that optimized pulses result in similar on-resonance flip-angle uniformity as BIR-4 pulses but with the advantages of superior off-resonance stability and significantly reduced average power. The pulse design techniques presented here are thus well-suited for practical application in ultra-high field human MRI.

Collaboration


Dive into the Jay Moore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge