Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay P. Graham is active.

Publication


Featured researches published by Jay P. Graham.


Annual Review of Public Health | 2008

Industrial Food Animal Production, Antimicrobial Resistance, and Human Health

Ellen K. Silbergeld; Jay P. Graham; Lance B. Price

Antimicrobial resistance is a major public health crisis, eroding the discovery of antimicrobials and their application to clinical medicine. There is a general lack of knowledge of the importance of agricultural antimicrobial use as a factor in antimicrobial resistance even among experts in medicine and public health. This review focuses on agricultural antimicrobial drug use as a major driver of antimicrobial resistance worldwide for four reasons: It is the largest use of antimicrobials worldwide; much of the use of antimicrobials in agriculture results in subtherapeutic exposures of bacteria; drugs of every important clinical class are utilized in agriculture; and human populations are exposed to antimicrobial-resistant pathogens via consumption of animal products as well as through widespread release into the environment.


Environmental Health Perspectives | 2013

Pit Latrines and Their Impacts on Groundwater Quality: A Systematic Review

Jay P. Graham; Matthew L. Polizzotto

Background: Pit latrines are one of the most common human excreta disposal systems in low-income countries, and their use is on the rise as countries aim to meet the sanitation-related target of the Millennium Development Goals. There is concern, however, that discharges of chemical and microbial contaminants from pit latrines to groundwater may negatively affect human health. Objectives: Our goals were to a) calculate global pit latrine coverage, b) systematically review empirical studies of the impacts of pit latrines on groundwater quality, c) evaluate latrine siting standards, and d) identify knowledge gaps regarding the potential for and consequences of groundwater contamination by latrines. Methods: We used existing survey and population data to calculate global pit latrine coverage. We reviewed the scientific literature on the occurrence of contaminants originating from pit latrines and considered the factors affecting transport of these contaminants. Data were extracted from peer-reviewed articles, books, and reports identified using Web of ScienceSM, PubMed, Google, and document reference lists. Discussion: We estimated that approximately 1.77 billion people use pit latrines as their primary means of sanitation. Studies of pit latrines and groundwater are limited and have generally focused on only a few indicator contaminants. Although groundwater contamination is frequently observed downstream of latrines, contaminant transport distances, recommendations based on empirical studies, and siting guidelines are variable and not well aligned with one another. Conclusions: In order to improve environmental and human health, future research should examine a larger set of contextual variables, improve measurement approaches, and develop better criteria for siting pit latrines.


Public Health Reports | 2008

The Animal-Human Interface and Infectious Disease in Industrial Food Animal Production: Rethinking Biosecurity and Biocontainment:

Jay P. Graham; Jessica H. Leibler; Lance B. Price; Joachim Otte; Dirk U. Pfeiffer; T. Tiensin; Ellen K. Silbergeld

Understanding interactions between animals and humans is critical in preventing outbreaks of zoonotic disease. This is particularly important for avian influenza. Food animal production has been transformed since the 1918 influenza pandemic. Poultry and swine production have changed from small-scale methods to industrial-scale operations. There is substantial evidence of pathogen movement between and among these industrial facilities, release to the external environment, and exposure to farm workers, which challenges the assumption that modern poultry production is more biosecure and biocontained as compared with backyard or small holder operations in preventing introduction and release of pathogens. An analysis of data from the Thai government investigation in 2004 indicates that the odds of H5N1 outbreaks and infections were significantly higher in large-scale commercial poultry operations as compared with backyard flocks. These data suggest that successful strategies to prevent or mitigate the emergence of pandemic avian influenza must consider risk factors specific to modern industrialized food animal production.


Science of The Total Environment | 2009

Antibiotic resistant enterococci and staphylococci isolated from flies collected near confined poultry feeding operations

Jay P. Graham; Lance B. Price; Sean L. Evans; Thaddeus K. Graczyk; Ellen K. Silbergeld

Use of antibiotics as feed additives in poultry production has been linked to the presence of antibiotic resistant bacteria in farm workers, consumer poultry products and the environs of confined poultry operations. There are concerns that these resistant bacteria may be transferred to communities near these operations; however, environmental pathways of exposure are not well documented. We assessed the prevalence of antibiotic resistant enterococci and staphylococci in stored poultry litter and flies collected near broiler chicken houses. Drug resistant enterococci and staphylococci were isolated from flies caught near confined poultry feeding operations in the summer of 2006. Susceptibility testing was conducted on isolates using antibiotics selected on the basis of their importance to human medicine and use in poultry production. Resistant isolates were then screened for genetic determinants of antibiotic resistance. A total of 142 enterococcal isolates and 144 staphylococcal isolates from both fly and poultry litter samples were identified. Resistance genes erm(B), erm(A), msr(C), msr(A/B) and mobile genetic elements associated with the conjugative transposon Tn916, were found in isolates recovered from both poultry litter and flies. Erm(B) was the most common resistance gene in enterococci, while erm(A) was the most common in staphylococci. We report that flies collected near broiler poultry operations may be involved in the spread of drug resistant bacteria from these operations and may increase the potential for human exposure to drug resistant bacteria.


Ecohealth | 2009

Industrial Food Animal Production and Global Health Risks: Exploring the Ecosystems and Economics of Avian Influenza

Jessica H. Leibler; Joachim Otte; David Roland-Holst; Dirk U. Pfeiffer; Ricardo J. Soares Magalhaes; Jonathan Rushton; Jay P. Graham; Ellen K. Silbergeld

Many emerging infectious diseases in human populations are associated with zoonotic origins. Attention has often focused on wild animal reservoirs, but most zoonotic pathogens of recent concern to human health either originate in, or are transferred to, human populations from domesticated animals raised for human consumption. Thus, the ecological context of emerging infectious disease comprises two overlapping ecosystems: the natural habitats and populations of wild animals, and the anthropogenically controlled habitats and populations of domesticated species. Intensive food animal production systems and their associated value chains dominate in developed countries and are increasingly important in developing countries. These systems are characterized by large numbers of animals being raised in confinement with high throughput and rapid turnover. Although not typically recognized as such, industrial food animal production generates unique ecosystems—environments that may facilitate the evolution of zoonotic pathogens and their transmission to human populations. It is often assumed that confined food animal production reduces risks of emerging zoonotic diseases. This article provides evidence suggesting that these industrial systems may increase animal and public health risks unless there is recognition of the specific biosecurity and biocontainment challenges of the industrial model. Moreover, the economic drivers and constraints faced by the industry and its participants must be fully understood in order to inform preventative policy. In order to more effectively reduce zoonotic disease risk from industrial food animal production, private incentives for the implementation of biosecurity must align with public health interests.


Environmental Health Perspectives | 2005

Arsenic: A Roadblock to Potential Animal Waste Management Solutions

Keeve E. Nachman; Jay P. Graham; Lance B. Price; Ellen K. Silbergeld

The localization and intensification of the poultry industry over the past 50 years have incidentally created a largely ignored environmental management crisis. As a result of these changes in poultry production, concentrated animal feeding operations (CAFOs) produce far more waste than can be managed by land disposal within the regions where it is produced. As a result, alternative waste management practices are currently being implemented, including incineration and pelletization of waste. However, organic arsenicals used in poultry feed are converted to inorganic arsenicals in poultry waste, limiting the feasibility of waste management alternatives. The presence of inorganic arsenic in incinerator ash and pelletized waste sold as fertilizer creates opportunities for population exposures that did not previously exist. The removal of arsenic from animal feed is a critical step toward safe poultry waste management.


Environmental Health Perspectives | 2007

Elevated risk of carrying gentamicin-resistant escherichia coli among U.S. poultry workers

Lance B. Price; Jay P. Graham; Leila G. Lackey; Amira A. Roess; Rocio Vailes; Ellen K. Silbergeld

Background Antimicrobial use in food-animal production is an issue of growing concern. The application of antimicrobials for therapy, prophylaxis, and growth promotion in broiler chicken production has been associated with the emergence and dissemination of antimicrobial-resistant enteric bacteria. Although human exposure to antimicrobial-resistant bacteria through food has been examined extensively, little attention has been paid to occupational and environmental pathways of exposure. Objective Our objective was to measure the relative risk for colonization with antimicrobial-resistant Escherichia coli among poultry workers compared with community referents. Methods We collected stool samples and health surveys from 16 poultry workers and 33 community referents in the Delmarva region of Maryland and Virginia. E. coli was cultured from stool samples, and susceptibility to ampicillin, ciprofloxacin, ceftriaxone, gentamicin, nitrofurantoin, and tetracycline was determined for each E. coli isolate. We estimated the relative risk for carrying antimicrobial-resistant E. coli among poultry workers compared with community referents. Results Poultry workers had 32 times the odds of carrying gentamicin-resistant E. coli compared with community referents. The poultry workers were also at significantly increased risk of carrying multidrug-resistant E. coli. Conclusions Occupational exposure to antimicrobial-resistant E. coli from live-animal contact in the broiler chicken industry may be an important route of entry for antimicrobial-resistant E. coli into the community.


Applied and Environmental Microbiology | 2001

Survival of fecal coliforms in dry-composting toilets

Thomas Redlinger; Jay P. Graham; Verónica Corella-Barud; Raquel Avitia

ABSTRACT The dry-composting toilet, which uses neither water nor sewage infrastructure, is a practical solution in areas with inadequate sewage disposal and where water is limited. These systems are becoming increasingly popular and are promoted to sanitize human excreta and to recycle them into fertilizer for nonedible plants, yet there are few data on the safety of this technology. This study analyzed fecal coliform reduction in approximately 90 prefabricated, dry-composting toilets (Sistema Integral de Reciclamiento de Desechos Orgánicos [SIRDOs]) that were installed on the U.S.-Mexico border in Ciudad Juárez, Chihuahua, Mexico. The purpose of this study was to determine fecal coliform reduction over time and the most probable method of this reduction. Biosolid waste samples were collected and analyzed at approximately 3 and 6 months and were classified based on U.S. Environmental Protection Agency standards. Results showed that class A compost (high grade) was present in only 35.8% of SIRDOs after 6 months. The primary mechanism for fecal coliform reduction was found to be desiccation rather than biodegradation. There was a significant correlation (P = 0.008) between classification rating and percent moisture categories of the biosolid samples: drier samples had a greater proportion of class A samples. Solar exposure was critical for maximal class A biosolid end products (P= 0.001). This study only addressed fecal coliforms as an indicator organism, and further research is necessary to determine the safety of composting toilets with respect to other pathogenic microorganisms, some of which are more resistant to desiccation.


Environmental Research | 2009

Fate of antimicrobial-resistant enterococci and staphylococci and resistance determinants in stored poultry litter

Jay P. Graham; Sean L. Evans; Lance B. Price; Ellen K. Silbergeld

The use of antimicrobials in commercial broiler poultry production results in the presence of drug-resistant bacteria shed in the excreta of these birds. Because these wastes are largely land-disposed these pathogens can affect the surrounding environment and population. In this analysis, we characterized the survival of antimicrobial-resistant enterococci and staphylococci and resistance genes in poultry litter. Temperature, moisture, and pH were measured in the litter over a 120-day period from storage sheds at three conventional US broiler chicken farms, as well as colony-forming units of Enterococcus spp. and Staphylococcus spp. Selected isolates from each sampling event were tested for resistance to eight antimicrobials used in poultry feeds as well as the presence of resistance genes and mobile genetic elements. Temperatures greater than 60 degrees C were only intermittently observed in the core of the litter piles. Both antimicrobial-resistant enterococci and staphylococci, as well as resistance genes persisted throughout the 120-day study period. Resistance genes identified in the study include: erm(A), erm(B), erm (C), msr(A/B), msr(C), and vat(E). This study indicates that typical storage practices of poultry litter are insufficient for eliminating drug-resistant enterococci and staphylococci, which may then be released into the environment through land disposal.


BMC Public Health | 2014

Trends in access to water supply and sanitation in 31 major sub-Saharan African cities: an analysis of DHS data from 2000 to 2012.

Mike R Hopewell; Jay P. Graham

BackgroundBy 2050, sub-Saharan Africa’s (SSA) urban population is expected to grow from 414 million to over 1.2 billion. This growth will likely increase challenges to municipalities attempting to provide access to water supply and sanitation (WS&S). This study aims to characterize trends in access to WS&S in SSA cities and identify factors affecting those trends.MethodsDHS data collected between 2000 and 2012 were used for this analysis of thirty-one cities in SSA. Four categories of household access to WS&S were studied using data from demographic and health surveys – these included: 1) household access to an improved water supply, 2) household’s time spent collecting water, 3) household access to improved sanitation, and 4) households reporting to engage in open defecation. An exploratory analysis of these measures was then conducted to assess the relationship of access to several independent variables.ResultsAmong the 31 cities, there was wide variability in coverage levels and trends in coverage with respect to the four categories of access. The majority of cities were found to be increasing access in the categories of improved water supply and improved sanitation (65% and 83% of cities, respectively), while fewer were making progress in reducing the amount of time spent collecting water and reducing open defecation (50% and 38% of cities, respectively). Additionally, the prevalence of open defecation in study cities was found to be, on average, increasing.ConclusionsBased on DHS data, cities appeared to be making the most progress in gaining access to WS&S along metrics which reflect specified targets of the Millennium Development Goals. Nearly half of the cities, however, did not make progress in reducing open defecation or the time spent collecting water. This may reflect that the MDGs have led to a focus on “improved” services while other measures, potentially more relevant to the extreme poor, are being neglected. This study highlights the need to better characterize access, beyond definitions of improved and unimproved, as well as the need to target resources to cities where changes in WS&S access have stalled, or in some cases regressed.

Collaboration


Dive into the Jay P. Graham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitsuaki Hirai

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Amira A. Roess

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Verónica Corella-Barud

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar

Gabriel Trueba

Universidad San Francisco de Quito

View shared research outputs
Top Co-Authors

Avatar

Cheng Huang

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Redlinger

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge