Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay P. McLaughlin is active.

Publication


Featured researches published by Jay P. McLaughlin.


Aaps Journal | 2009

Peptide Kappa Opioid Receptor Ligands: Potential for Drug Development

Jane V. Aldrich; Jay P. McLaughlin

While narcotic analgesics such as morphine, which act preferentially through mu opioid receptors, remain the gold standard in the treatment of severe pain, their use is limited by detrimental liabilities such as respiratory depression and drug dependence. Thus, there has been considerable interest in developing ligands for kappa opioid receptors (KOR) as potential analgesics and for the treatment of a variety of other disorders. These include effects mediated both by central receptors, such as antidepressant activity and a reduction in cocaine-seeking behavior, and activity resulting from the activation of peripheral receptors, such as analgesic and anti-inflammatory effects. While the vast majority of opioid receptor ligands that have progressed in preclinical development have been small molecules, significant advances have been made in recent years in identifying opioid peptide analogs that exhibit promising in vivo activity. This review will focus on possible therapeutic applications of ligands for KOR and specifically on the potential development of peptide ligands for these receptors.


The Journal of Neuroscience | 2009

Endogenous κ Opioid Activation Mediates Stress-Induced Deficits in Learning and Memory

Amanda N. Carey; Angela M. Lyons; Christopher F. Shay; Ocean Dunton; Jay P. McLaughlin

We hypothesized that mice subjected to prolonged stress would demonstrate decreased performance in a learning and memory task attributable to the endogenous activation of the κ opioid receptor (KOR). C57BL/6J mice were tested using the novel object recognition (NOR) assay at various time points after exposure to repeated forced swim stress (FSS). Unstressed mice demonstrated recognition of the novel object at the end of a procedure using three 10-min object interaction phases, with a recognition index (RI) for the novel object of 71.7 ± 3.4%. However, 1 h after exposure to FSS, vehicle-pretreated mice displayed a significant deficit in performance (RI = 58.2 ± 4.1%) compared with unstressed animals. NOR was still significantly reduced 4 but not 24 h after FSS. Treatment with the KOR-selective antagonist norbinaltorphimine (10 mg/kg, i.p.) prevented the decline in learning and memory performance. Moreover, direct activation of the KOR induced performance deficits in NOR, as exogenous administration of the KOR agonist U50,488 [(±)-trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide] (0.3 mg/kg, i.p.) suppressed NOR (RI = 56.0 ± 3.9%). The effect of FSS on NOR performance was further examined in mice lacking the gene for the endogenous KOR agonist dynorphin (Dyn). Dyn gene-disrupted mice exposed to FSS did not show the subsequent learning and memory deficits (RI = 66.8 ± 3.8%) demonstrated by their wild-type littermates (RI = 49.7 ± 2.9%). Overall, these results suggest that stress-induced activation of the KOR may be both necessary and sufficient to produce subsequent deficits in novel object recognition.


Behavioural Brain Research | 2012

Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse.

Amanda N. Carey; Elizabeth I. Sypek; Harminder D. Singh; Marc J. Kaufman; Jay P. McLaughlin

HIV-Tat protein has been implicated in the pathogenesis of HIV-1 neurological complications (i.e., neuroAIDS), but direct demonstrations of the effects of Tat on behavior are limited. GT-tg mice with a doxycycline (Dox)-inducible and brain-selective tat gene coding for Tat protein were used to test the hypothesis that the activity of Tat in brain is sufficient to impair learning and memory processes. Western blot analysis of GT-tg mouse brains demonstrated an increase in Tat antibody labeling that seemed to be dependent on the dose and duration of Dox pretreatment. Dox-treated GT-tg mice tested in the Barnes maze demonstrated longer latencies to find an escape hole and displayed deficits in probe trial performance versus uninduced GT-tg littermates, suggesting Tat-induced impairments of spatial learning and memory. Reversal learning was also impaired in Tat-induced mice. Tat-induced mice additionally demonstrated long-lasting (up to one month) deficiencies in novel object recognition learning and memory performance. Furthermore, novel object recognition impairment was dependent on the dose and duration of Dox exposure, suggesting that Tat exposure progressively mediated deficits. These experiments provide evidence that Tat protein expression is sufficient to mediate cognitive abnormalities seen in HIV-infected individuals. Moreover, the genetically engineered GT-tg mouse may be useful for improving our understanding of the neurological underpinnings of neuroAIDS-related behaviors.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Zyklophin, a systemically active selective kappa opioid receptor peptide antagonist with short duration of action

Jane V. Aldrich; Kshitij A. Patkar; Jay P. McLaughlin

The cyclic peptide zyklophin {[N-benzylTyr1,cyclo(D-Asp5,Dap8)-dynorphin A-(1–11)NH2, Patkar KA, et al. (2005) J Med Chem 48: 4500–4503} is a selective peptide kappa opioid receptor (KOR) antagonist that shows activity following systemic administration. Systemic (1–3 mg/kg s.c.) as well as central (0.3–3 nmol intracerebroventricular, i.c.v.) administration of this peptide dose-dependently antagonizes the antinociception induced by the selective KOR agonist U50,488 in C57BL/6J mice tested in the 55 °C warm water tail withdrawal assay. Zyklophin administration had no effect on morphine- or SNC-80-mediated antinociception, suggesting that zyklophin selectively antagonizes KOR in vivo. Additionally, the antagonism of antinociception induced by centrally (i.c.v.) administered U50,488 following peripheral administration of zyklophin strongly suggests that the peptide crosses the blood-brain barrier to antagonize KOR in the CNS. Most importantly, the antagonist activity of zyklophin (3 mg/kg s.c.) lasts less than 12 h, which contrasts sharply with the exceptionally long duration of antagonism reported for the established small-molecule selective KOR antagonists such as nor-binaltorphimine (nor-BNI) that last weeks after a single administration. Systemically administered zyklophin (3 mg/kg s.c.) also prevented stress-induced reinstatement of cocaine-seeking behavior in a conditioned place preference assay. In conclusion, the peptide zyklophin is a KOR-selective antagonist that exhibits the desired shorter duration of action, and represents a significant advance in the development of KOR-selective antagonists.


Journal of Pharmacology and Experimental Therapeutics | 2011

Pharmacological Characterization of 2-Methyl-N-((2′-(pyrrolidin-1-ylsulfonyl)biphenyl-4-yl)methyl)propan-1-amine (PF-04455242), a High-Affinity Antagonist Selective for κ-Opioid Receptors

Sarah Grimwood; Yifeng Lu; Anne W. Schmidt; Michelle Vanase-Frawley; Aarti Sawant-Basak; Emily Miller; Stafford McLean; Jody Freeman; Stephen Wong; Jay P. McLaughlin; Patrick Robert Verhoest

2-Methyl-N-((2′-(pyrrolidin-1-ylsulfonyl)biphenyl-4-yl)methyl)propan-1-amine (PF-04455242) is a novel κ-opioid receptor (KOR) antagonist with high affinity for human (3 nM), rat (21 nM), and mouse (22 nM) KOR, a ∼20-fold reduced affinity for human μ-opioid receptors (MORs; Ki = 64 nM), and negligible affinity for δ-opioid receptors (Ki > 4 μM). PF-04455242 also showed selectivity for KORs in vivo. In rats, PF-04455242 blocked KOR and MOR agonist-induced analgesia with ID50 values of 1.5 and 9.8 mg/kg, respectively, and inhibited ex vivo [3H](2-(benzofuran-4-yl)-N-methyl-N-((5S,7R,8R)-7-(pyrrolidin-1-yl)-1-oxaspiro[4.5]decan-8-yl)acetamide ([3H]CI977) and [3H](2S)-2-[[2-[[(2R)-2-[[(2S)-2-amino-3-(4-hydroxyphenyl) propanoyl]amino]propanoyl]amino]acetyl]-methylamino]-N-(2-hydroxyethyl)-3-phenylpropanamide ([3H]DAMGO) binding to KOR and MOR receptors with ID50 values of 2.0 and 8.6 mg/kg, respectively. An in vivo binding assay was developed using (-)-4-[3H]methoxycarbonyl-2-[(1-pyrrolidinylmethyl]-1-[(3,4-dichlorophenyl)acetyl]-piperidine ([3H]PF-04767135), a tritiated version of the KOR positron emission tomography ligand (-)-4-[11C]methoxycarbonyl-2-[(1-pyrrolidinylmethyl]-1-[(3,4-dichlorophenyl)acetyl]-piperidine ([11C]GR103545) in which PF-04455242 had an ID50 of 5.2 mg/kg. PF-04455242 demonstrated antidepressant-like efficacy (mouse forced-swim test), attenuated the behavioral effects of stress (mouse social defeat stress assay), and showed therapeutic potential in treating reinstatement of extinguished cocaine-seeking behavior (mouse conditioned place preference). KOR agonist-induced plasma prolactin was investigated as a translatable mechanism biomarker. Spiradoline (0.32 mg/kg) significantly increased rat plasma prolactin levels from 1.9 ± 0.4 to 41.9 ± 4.9 ng/ml. PF-04455242 dose-dependently reduced the elevation of spiradoline-induced plasma prolactin with an ID50 of 2.3 ± 0.1 mg/kg, which aligned well with the ED50 values obtained from the rat in vivo binding and efficacy assays. These data provide further evidence that KOR antagonists have potential for the treatment of depression and addiction disorders.


The FASEB Journal | 2012

Peptides derived from the prohormone proNPQ/spexin are potent central modulators of cardiovascular and renal function and nociception

Lawrence Toll; Taline V. Khroyan; Kemal Sonmez; Akihiko Ozawa; Iris Lindberg; Jay P. McLaughlin; Shainnel O. Eans; Amir A. Shahien; Daniel R. Kapusta

Computational methods have led two groups to predict the endogenous presence of a highly conserved, amidated, 14‐aa neuropeptide called either spexin or NPQ. NPQ/spexin is part of a larger prohormone that contains 3 sets of RR residues, suggesting that it could yield more than one bioactive peptide; however, no in vivo activity has been demonstrated for any peptide processed from this precursor. Here we demonstrate biological activity for two peptides present within proNPQ/spexin. NPQ/spexin (NWTPQAMLYLKGAQ‐NH2) and NPQ 53–70 (FISDQSRRKDLSDRPLPE) have differing renal and cardiovascular effects when administered intracerebroventricularly or intravenously into rats. Intracerebroventricular injection of NPQ/spexin produced a 13 ± 2 mmHg increase in mean arterial pressure, a 38 ± 8 bpm decrease in heart rate, and a profound decrease in urine flow rate. Intracerebroventricular administration of NPQ 53–70 produced a 26 ± 9 bpm decrease in heart rate with no change in mean arterial pressure, and a marked increase in urine flow rate. Intraventricular NPQ/spexin and NPQ 53–70 also produced antinociceptive activity in the warm water tail withdrawal assay in mice (ED50<30 and 10 nmol for NPQ/spexin and NPQ 53–70, respectively). We conclude that newly identified peptides derived from the NPQ/spexin precursor contribute to CNS‐mediated control of arterial blood pressure and salt and water balance and modulate nociceptive responses.—Toll, L., Khroyan, T. V., Sonmez, K., Ozawa, A., Lindberg, I., McLaughlin, J. P., Eans, S. O., Shahien, A. A., Kapusta, D. R. Peptides derived from the prohormone proNPQ/spexin are potent central modulators of cardiovascular and renal function and nociception. FASEB J. 26, 947–954 (2012). www.fasebj.org


Neuropsychopharmacology | 2014

Effects of conditional central expression of HIV-1 tat protein to potentiate cocaine-mediated psychostimulation and reward among male mice.

Jason J. Paris; Amanda N. Carey; Christopher F Shay; Stacey M. Gomes; Johnny J He; Jay P. McLaughlin

As a major neuropathogenic factor associated with human immunodeficiency virus (HIV) infection, HIV-1 Tat protein is known to synergize with psychostimulant drugs of abuse to cause neurotoxicity and exacerbate the progression of central nervous system pathology. However, the functional consequences of the interaction between HIV-1 Tat and abused drugs on behavior are little known. We tested the hypothesis that HIV-1 Tat expression in brain would modulate the psychostimulant effects of cocaine. Using the GT-tg bigenic mouse model, where brain-selective Tat expression is induced by activation of a doxycycline (Dox) promotor, we tested the effects of Tat on cocaine (10 mg/kg, s.c.) induced locomotion and conditioned place preference (CPP). Compared with uninduced littermates or C57BL/6J controls, cocaine-induced hyperlocomotion was sustained for a significantly longer duration among Tat-induced mice. Moreover, although all groups displayed similar saline-CPP, Tat-induced GT-tg mice demonstrated a three-fold increase in cocaine-CPP over the response of either uninduced littermates or Dox-treated C57BL/6J control mice. Induction of Tat also increased the magnitude of a previously established cocaine-CPP after an additional cycle of cocaine place-conditioning. Despite Tat-induced potentiation, extinction of place preference occurred within 21 days, commensurate with cocaine-extinction among saline-treated littermates and C57BL/6J controls. Re-exposure to cocaine produced reinstatement of an equivalent place preference in Tat-induced GT-tg or C57BL/6J mice; however, induction of Tat protein after the extinction of CPP also produced reinstatement without additional exposure to cocaine. Together, these data suggest that central HIV-1 Tat expression can potentiate the psychostimulant behavioral effects of cocaine in mice.


British Journal of Pharmacology | 2012

Novel opioid cyclic tetrapeptides: Trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting κ opioid receptor antagonism

Nicolette C. Ross; Kate J. Reilley; Thomas F. Murray; Jane V. Aldrich; Jay P. McLaughlin

The κ opioid receptor antagonists demonstrate potential for maintaining abstinence from psychostimulant abuse, but existing non‐peptide κ‐receptor selective antagonists show exceptionally long activity. We hypothesized that the L‐ and D‐Trp isomers of CJ‐15,208, a natural cyclic tetrapeptide reported to be a κ‐receptor antagonist in vitro, would demonstrate short‐acting, dose‐dependent antagonism in vivo, preventing reinstatement of cocaine‐seeking behaviour.


Aaps Journal | 2010

Identification of Two Novel, Potent, Low-Liability Antinociceptive Compounds from the Direct In Vivo Screening of a Large Mixture-Based Combinatorial Library

Kate J. Reilley; Marc A. Giulianotti; Colette T. Dooley; Adel Nefzi; Jay P. McLaughlin; Richard A. Houghten

Synthetic combinatorial methods now make it practical to readily produce hundreds of thousands of individual compounds, but it is clearly impractical to screen each separately in vivo. We theorized that the direct in vivo testing of mixture-based combinatorial libraries during the discovery phase would enable the identification of novel individual compounds with desirable antinociceptive profiles while simultaneously eliminating many compounds with poor absorption, distribution, metabolism, or pharmacokinetic properties. The TPI 1346 small-molecule combinatorial library is grouped in 120 mixtures derived from 26 functionalities at the first three positions and 42 functionalities at the fourth position of a pyrrolidine bis-cyclic guanidine core scaffold, totaling 738,192 compounds. These 120 mixtures were screened in vivo using the mouse 55°C warm water tail-withdrawal assay to identify mixtures producing antinociception. From these data, two fully defined individual compounds (TPI 1818-101 and TPI 1818-109) were synthesized. These were examined for antinociceptive, respiratory, locomotor, and conditioned place preference effects. The tail-withdrawal assay consistently demonstrated distinctly active mixtures with analgesic activity that was blocked by pretreatment with the non-selective opioid antagonist, naloxone. Based on these results, synthesis and testing of TPI 1818-101 and 1818-109 demonstrated a dose-dependent antinociceptive effect three to five times greater than morphine that was antagonized by mu- or mu- and kappa-opioid receptor selective antagonists, respectively. Neither 1818-101 nor 1818-109 produced significant respiratory depression, hyperlocomotion, or conditioned place preference. Large, highly diverse mixture-based libraries can be screened directly in vivo to identify individual compounds, potentially accelerating the development of promising therapeutics.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2013

Conditional Tat protein expression in the GT-tg bigenic mouse brain induces gray matter density reductions

Amanda N. Carey; Xiaoxu Liu; Dionyssios Mintzopoulos; Jason J. Paris; John W. Muschamp; Jay P. McLaughlin; Marc J. Kaufman

Tat (Trans-activator of transcription) is implicated in the neuropathogenesis of HIV-1 infection and known to contribute to neuronal damage and learning and memory impairments. However, direct neuroanatomical demonstration of Tat pathobiology is limited. GT-tg bigenic mice with a doxycycline (Dox)-inducible and brain-selective tat gene were used to test the hypothesis that conditional induction of Tat activity in brain can induce gray matter density abnormalities. Ultra high spatial resolution ex vivo magnetic resonance imaging (MRI) combined with a voxel based morphometry (VBM) analysis revealed gray matter density reductions in the sublenticular extended amygdala, the amygdala, the amygdala-hippocampal area, piriform and peri-/entorhinal cortices, and hypothalamus, in Tat-expressing GT-tg mice compared to Dox-treated C57Bl/6J mice. These neuroanatomical abnormalities are consistent with regions expected to be abnormal based on behavioral deficits exhibited by Tat-expressing mice (Carey et al., 2012). These experiments provide the first neuroimaging evidence that conditional Tat protein expression in the GT-tg bigenic mouse model alters brain structure. The findings warrant future studies to further characterize effects of conditional Tat expression on brain structure. Such studies may improve our understanding of the neurological underpinnings of neuroAIDS and the neurodegeneration associated with HIV-1 infection, potentially leading to new treatments.

Collaboration


Dive into the Jay P. McLaughlin's collaboration.

Top Co-Authors

Avatar

Shainnel O. Eans

Torrey Pines Institute for Molecular Studies

View shared research outputs
Top Co-Authors

Avatar

Michelle L. Ganno

Torrey Pines Institute for Molecular Studies

View shared research outputs
Top Co-Authors

Avatar

Jason J. Paris

Torrey Pines Institute for Molecular Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate J. Reilley

Torrey Pines Institute for Molecular Studies

View shared research outputs
Top Co-Authors

Avatar

Elisa Mizrachi

Torrey Pines Institute for Molecular Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colette T. Dooley

Torrey Pines Institute for Molecular Studies

View shared research outputs
Top Co-Authors

Avatar

Richard A. Houghten

Torrey Pines Institute for Molecular Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge