Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay S. Coggan is active.

Publication


Featured researches published by Jay S. Coggan.


Neuron | 1996

Synaptic Currents Generated by Neuronal Acetylcholine Receptors Sensitive to α-Bungarotoxin

Zhong-wei Zhang; Jay S. Coggan; Darwin K. Berg

Abstract Nicotinic acetylcholine receptors are widely distributed throughout the nervous system, but their functions remain largely unknown. One of the most abundant is a class of receptors that contains the α7 gene product, has a high relative permeability to calcium, and binds α-bungarotoxin. Here, we report that receptors sensitive to α-bungarotoxin, though concentrated in perisynaptic clusters on neurons, can generate a large amount of the synaptic current. Residual currents through other nicotinic receptors are sufficient to elicit action potentials, but with slower rise times. This demonstrates a postsynaptic response for α-bungarotoxin-sensitive receptors on neurons and suggests that the functional domain of the postsynaptic membrane is broader than previously recognized.


Neuron | 2003

PDZ-Containing Proteins Provide a Functional Postsynaptic Scaffold for Nicotinic Receptors in Neurons

William G. Conroy; Zhaoping Liu; Qiang Nai; Jay S. Coggan; Darwin K. Berg

Protein scaffolds are essential for specific and efficient downstream signaling at synapses. Though nicotinic receptors are widely expressed in the nervous system and influence numerous cellular events due in part to their calcium permeability, no scaffolds have yet been identified for the receptors in neurons. Here we show that specific members of the PSD-95 family of PDZ-containing proteins are associated with specific nicotinic receptor subtypes. At postsynaptic sites, the PDZ scaffolds are essential for maturation of functional nicotinic synapses on neurons. They also help mediate downstream signaling as exemplified by activation of transcription factors. By tethering components to postsynaptic nicotinic receptors, PDZ scaffolds can organize synaptic structure and determine which calcium-dependent processes will be subject to nicotinic modulation.


Biophysical Journal | 2008

Computational Modeling of Three-Dimensional Electrodiffusion in Biological Systems: Application to the Node of Ranvier

Courtney L. Lopreore; Thomas M. Bartol; Jay S. Coggan; Daniel X. Keller; Gina E. Sosinsky; Mark H. Ellisman; Terrence J. Sejnowski

A computational model is presented for the simulation of three-dimensional electrodiffusion of ions. Finite volume techniques were used to solve the Poisson-Nernst-Planck equation, and a dual Delaunay-Voronoi mesh was constructed to evaluate fluxes of ions, as well as resulting electric potentials. The algorithm has been validated and applied to a generalized node of Ranvier, where numerical results for computed action potentials agree well with cable model predictions for large clusters of voltage-gated ion channels. At smaller channel clusters, however, the three-dimensional electrodiffusion predictions diverge from the cable model predictions and show a broadening of the action potential, indicating a significant effect due to each channels own local electric field. The node of Ranvier complex is an elaborate organization of membrane-bound aqueous compartments, and the model presented here represents what we believe is a significant first step in simulating electrophysiological events with combined realistic structural and physiological data.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Imbalance of ionic conductances contributes to diverse symptoms of demyelination

Jay S. Coggan; Steven A. Prescott; Thomas M. Bartol; Terrence J. Sejnowski

Fast axonal conduction of action potentials in mammals relies on myelin insulation. Demyelination can cause slowed, blocked, desynchronized, or paradoxically excessive spiking that underlies the symptoms observed in demyelination diseases. The diversity and timing of such symptoms are poorly understood, often intermittent, and uncorrelated with disease progress. We modeled the effects of demyelination (and secondary remodeling) on intrinsic axonal excitability using Hodgkin–Huxley and reduced Morris–Lecar models. Simulations and analysis suggested a simple explanation for the breadth of symptoms and revealed that the ratio of sodium to leak conductance, gNa/gL, acted as a four-way switch controlling excitability patterns that included spike failure, single spike transmission, afterdischarge, and spontaneous spiking. Failure occurred when this ratio fell below a threshold value. Afterdischarge occurred at gNa/gL just below the threshold for spontaneous spiking and required a slow inward current that allowed for two stable attractor states, one corresponding to quiescence and the other to repetitive spiking. A neuron prone to afterdischarge could function normally unless it was switched to its “pathological” attractor state; thus, although the underlying pathology may develop slowly by continuous changes in membrane conductances, a discontinuous change in axonal excitability can occur and lead to paroxysmal symptoms. We conclude that tonic and paroxysmal positive symptoms as well as negative symptoms may be a consequence of varying degrees of imbalance between gNa and gL after demyelination. The KCNK family of gL potassium channels may be an important target for new drugs to treat the symptoms of demyelination.


Neuroscience | 1994

Muscarinic inhibition of two potassium currents in guinea-pig prevertebral neurons : differentiation by extracellular cesium

Jay S. Coggan; S.L. Purnyn; Steven R. Knoper; David L. Kreulen

Muscarinic responses were studied in dissociated guinea-pig celiac ganglion neurons using the whole-cell voltage-clamp technique. Muscarine (0.025-1 mM; EC50 = 95 microM) administered to cells for 1.5 s evoked inward shifts in holding current in 53 of 74 cells. The amplitude of the inward current transients decreased with hyperpolarization and the null potential averaged -71 +/- 3.4 mV (n = 11). The currents that underlie the responses to muscarine were examined with hyperpolarizing voltage stepping protocols to -100 mV from a holding potential of -30 mV. Eighty-one per cent of cells displayed voltage-dependent current relaxations characteristic of the M-potassium current. Twenty per cent of responding cells displayed no M-current but only a voltage-independent current consistent with a leak current. In the latter type of cells, the muscarine-evoked inward currents reversed near EK and became outward at more hyperpolarized potentials. Analysis of steady state I-V relationships before and after bath application of muscarine showed that the two muscarine-sensitive potassium currents were distributed differently among three types of cells: (i) with M-current (18%); (ii) with leak current (18%); and (iii) with M-current and with leak current (64%). Cesium and barium were used to differentiate the M-current and the muscarine-sensitive leak current. Barium (2 mM) reduced the M-current and the leak potassium current, whereas cesium (2 mM) reduced the M-current but did not affect leak current. Thus, barium reduced the amplitude of muscarinic responses by 79% but cesium reduced them by only 14%. We conclude that muscarinic responses in guinea-pig celiac neurons are produced by suppression of two K+ currents: the M-current and a muscarine-sensitive leak current. These two currents are differentially susceptible to the potassium channel blockers barium and cesium.


Nature Neuroscience | 2008

Rapid and modifiable neurotransmitter receptor dynamics at a neuronal synapse in vivo

Corey M. McCann; Juan Carlos Tapia; Han Kim; Jay S. Coggan; Jeff W. Lichtman

Synaptic plasticity underlies the adaptability of the mammalian brain, but has been difficult to study in living animals. Here we imaged the synapses between pre- and postganglionic neurons in the mouse submandibular ganglion in vivo, focusing on the mechanisms that maintain and regulate neurotransmitter receptor density at postsynaptic sites. Normally, synaptic receptor densities were maintained by rapid exchange of receptors with nonsynaptic regions (over minutes) and by continual turnover of cell surface receptors (over hours). However, after ganglion cell axons were crushed, synaptic receptors showed greater lateral mobility and there was a precipitous decline in insertion. These changes led to near-complete loss of synaptic receptors and synaptic depression. Disappearance of postsynaptic spines and presynaptic terminals followed this acute synaptic depression. Therefore, neurotransmitter receptor dynamism associated with rapid changes in synaptic efficacy precedes long-lasting structural changes in synaptic connectivity.


PLOS Computational Biology | 2015

Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble.

Renaud Jolivet; Jay S. Coggan; Igor Allaman; Pierre J. Magistretti

Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.


The Journal of Comparative Neurology | 2000

The neurofilament infrastructure of a developing presynaptic calyx

Jacques Paysan; William G. Conroy; Jay S. Coggan; Darwin K. Berg

Calyx‐type synapses appear to be specifically designed to support fast, reliable, high‐frequency excitatory transmission. In the chick ciliary ganglion, calyx terminals from preganglionic neurons in the midbrain form early in development on ciliary neurons. We find that labeling the calyx membranes with a lipophilic dye delivered by diffusion down the preganglionic nerve reveals a large membrane structure engulfing the postsynaptic cell by the end of embryogenesis. In contrast, labeling the calyces with a water‐soluble dye by diffusion through the preganglionic nerve suggests large discontinuities in the calyx. A similar pattern of discontinuities is seen when presynaptic neurofilaments are labeled with antibodies selective for highly phosphorylated neurofilaments. The neurofilament infrastructure of the calyx first appears as a single thick bundle, which subsequently bifurcates during development and eventually generates a fine meshwork of filaments subdivided by several large neurofilament bundles encircling the postsynaptic cell body. The large bundles probably produce protruding ridges in the otherwise thin calyx cup, accounting for the disparity in staining patterns observed with membrane and cytosolic dyes. The postsynaptic membrane also undergoes restructuring during development with the appearance of large folded mats of somatic spines heavily invested with nicotinic receptors. The large presynaptic neurofilament bundles do not overlap the postsynaptic receptor clusters but do codistribute with large tracks of presynaptic microtubules. The neurofilament bundles may act as girders to provide structural support while at the same time defining conduits for microtubule‐dependent transport of materials and rapid propagation of electrical signals throughout the extended calyx. J. Comp. Neurol. 425:284–294, 2000.


Journal of The Autonomic Nervous System | 1991

ELECTROPHYSIOLOGICAL PROPERTIES AND CHOLINERGIC RESPONSES IN GUINEA-PIG CELIAC GANGLION NEURONS IN PRIMARY CULTURE

Jay S. Coggan; R. Gruener; David L. Kreulen

Prevertebral neurons enzymatically dissociated from celiac ganglia of adult guinea-pigs were maintained in long-term primary culture. Cells were plated at a density of 95 +/- 15 cm-2, and intracellular electrical activity was measured between 2 and 7 weeks after dissociation. Neurite outgrowth began within 24 h of enzymatic dissociation. Cell survival dropped below 50% after more than two weeks in culture. The resting potential (-53 mV +/- 0.8), time constant (12 ms +/- 1.3), input resistance (47 M omega +/- 8.6), rheobase (0.33 nA +/- 0.02), degree of accommodation, spike amplitude (70 mV +/- 3.0), after hyperpolarization amplitude (-9.5 mV +/- 0.55), and after hyperpolarization duration (88 ms +/- 7.6) in these cells were not different from those recorded from neurons in intact celiac ganglia. A larger proportion (greater than 90%) of cells exhibited fast accommodation (phasic) in response to depolarizing current pulses. Unevoked (spontaneous) depolarizations and action potentials were observed. The cells responded to pressure ejected acetylcholine. Two types of responses consisted of an early rapid depolarization which was attenuated by hexamethonium and a later slow depolarization which was attenuated by atropine. We conclude that prevertebral neurons from guinea-pigs can be maintained in long-term primary culture, that they retain electrophysiological properties similar to intact ganglia and exhibit complex responsivity to acetylcholine.


Frontiers in Neuroscience | 2013

Proposed evolutionary changes in the role of myelin

Klaus M. Stiefel; Benjamin Torben-Nielsen; Jay S. Coggan

Myelin is the multi-layered lipid sheet periodically wrapped around neuronal axons. It is most frequently found in vertebrates. Myelin allows for saltatory action potential (AP) conduction along axons. During this form of conduction, the AP travels passively along the myelin-covered part of the axon, and is recharged at the intermittent nodes of Ranvier. Thus, myelin can reduce the energy load needed and/or increase the speed of AP conduction. Myelin first evolved during the Ordovician period. We hypothesize that myelins first role was mainly energy conservation. During the later “Mesozoic marine revolution,” marine ecosystems changed toward an increase in marine predation pressure. We hypothesize that the main purpose of myelin changed from energy conservation to conduction speed increase during this Mesozoic marine revolution. To test this hypothesis, we optimized models of myelinated axons for a combination of AP conduction velocity and energy efficiency. We demonstrate that there is a trade-off between these objectives. We then compared the simulation results to empirical data and conclude that while the data are consistent with the theory, additional measurements are necessary for a complete evaluation of the proposed hypothesis.

Collaboration


Dive into the Jay S. Coggan's collaboration.

Top Co-Authors

Avatar

Terrence J. Sejnowski

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas M. Bartol

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Darwin K. Berg

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre J. Magistretti

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Gabriel Koch Ocker

Allen Institute for Brain Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge