Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jayachandran N. Kizhakkedathu is active.

Publication


Featured researches published by Jayachandran N. Kizhakkedathu.


Nature Biotechnology | 2010

Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products

Oded Kleifeld; Alain Doucet; Ulrich auf dem Keller; Anna Prudova; Oliver Schilling; Rajesh K. Kainthan; Amanda E. Starr; Leonard J. Foster; Jayachandran N. Kizhakkedathu; Christopher M. Overall

Effective proteome-wide strategies that distinguish the N-termini of proteins from the N-termini of their protease cleavage products would accelerate identification of the substrates of proteases with broad or unknown specificity. Our approach, named terminal amine isotopic labeling of substrates (TAILS), addresses this challenge by using dendritic polyglycerol aldehyde polymers that remove tryptic and C-terminal peptides. We analyze unbound naturally acetylated, cyclized or labeled N-termini from proteins and their protease cleavage products by tandem mass spectrometry, and use peptide isotope quantification to discriminate between the substrates of the protease of interest and the products of background proteolysis. We identify 731 acetylated and 132 cyclized N-termini, and 288 matrix metalloproteinase (MMP)-2 cleavage sites in mouse fibroblast secretomes. We further demonstrate the potential of our strategy to link proteases with defined biological pathways in complex samples by analyzing mouse inflammatory bronchoalveolar fluid and showing that expression of the poorly defined breast cancer protease MMP-11 in MCF-7 human breast cancer cells cleaves both endoplasmin and the immunomodulator and apoptosis inducer galectin-1.


Biomaterials | 2011

The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides

Guangzheng Gao; Dirk Lange; Kai Hilpert; Jason Kindrachuk; Yuquan Zou; John T.J. Cheng; Mehdi Kazemzadeh-Narbat; Kai Yu; Rizhi Wang; Suzana K. Straus; Donald E. Brooks; Ben H. Chew; Robert E. W. Hancock; Jayachandran N. Kizhakkedathu

Bacterial colonization on implant surfaces and subsequent infections are one of the most common reasons for the failure of many indwelling devices. Several approaches including antimicrobial and antibiotic-eluting coatings on implants have been attempted; however, none of these approaches succeed in vivo. Here we report a polymer brush based implant coating that is non-toxic, antimicrobial and biofilm resistant. These coating consists of covalently grafted hydrophilic polymer chains conjugated with an optimized series of antimicrobial peptides (AMPs). These tethered AMPs maintained excellent broad spectrum antimicrobial activity in vitro and in vivo. We found that this specially structured robust coating was extremely effective in resisting biofilm formation, and that the biofilm resistance depended on the nature of conjugated peptides. The coating had no toxicity to osteoblast-like cells and showed insignificant platelet activation and adhesion, and complement activation in human blood. Since such coatings can be applied to most currently used implant surfaces, our approach has significant potential for the development of infection-resistant implants.


Biomaterials | 2013

Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections

Mehdi Kazemzadeh-Narbat; Benjamin F.L. Lai; Chuanfan Ding; Jayachandran N. Kizhakkedathu; Robert E. W. Hancock; Rizhi Wang

Prevention of bacterial colonization and formation of a bacterial biofilm on implant surfaces has been a challenge in orthopaedic surgery. The treatment of implant-associated infections with conventional antibiotics has become more complicated by the emergence of multi-drug resistant bacteria. Antimicrobial eluting coatings on implants is one of the most promising strategies that have been attempted. This study reports a controlled release of an antimicrobial peptide (AMP) from titanium surface through a non-cytotoxic multilayered coating. Three layers of vertically oriented TiO2 nanotubes, a thin layer of calcium phosphate coating and a phospholipid (POPC) film were impregnated with a potent broad-spectrum AMP (HHC-36). The coating with controlled and sustained release of AMP was highly effective against both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. No cytotoxicity to osteoblast-like cells (MG-63) was observed. Moderate platelet activation and adhesion on the implant surface with no observable activation in solution, and very low red blood cell lysis was observed on the implant. This multi-layer assembly can be a potential approach to locally deliver AMPs to prevent peri-implant infection in orthopaedics without being toxic to host cells.


Nature Protocols | 2011

Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates

Oded Kleifeld; Alain Doucet; Anna Prudova; Ulrich auf dem Keller; Magda Gioia; Jayachandran N. Kizhakkedathu; Christopher M. Overall

Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo–N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and non-cleaved proteins by peptide isotope quantification and bioinformatics search criteria.


Biomaterials | 2012

Influence of architecture of high molecular weight linear and branched polyglycerols on their biocompatibility and biodistribution

Muhammad Imran ul-haq; Benjamin F.L. Lai; Rafi Chapanian; Jayachandran N. Kizhakkedathu

The availability of long circulating, multifunctional polymers is critical to the development of drug delivery systems and bioconjugates. The ease of synthesis and functionalization make linear polymers attractive but their rapid clearance from circulation compared to their branched or cyclic counterparts, and their high solution viscosities restrict their applications in certain settings. Herein, we report the unusual compact nature of high molecular weight (HMW) linear polyglycerols (LPGs) (LPG - 100; M(n) - 104 kg mol(-1), M(w)/M(n) - 1.15) in aqueous solutions and its impact on its solution properties, blood compatibility, cell compatibility, in vivo circulation, biodistribution and renal clearance. The properties of LPG have been compared with hyperbranched polyglycerol (HPG) (HPG-100), linear polyethylene glycol (PEG) with similar MWs. The hydrodynamic size and the intrinsic viscosity of LPG-100 in water were considerably lower compared to PEG. The Mark-Houwink parameter of LPG was almost 10-fold lower than that of PEG. LPG and HPG demonstrated excellent blood and cell compatibilities. Unlike LPG and HPG, HMW PEG showed dose dependent activation of blood coagulation, platelets and complement system, severe red blood cell aggregation and hemolysis, and cell toxicity. The long blood circulation of LPG-100 (t(1/2β,) 31.8 ± 4 h) was demonstrated in mice; however, it was shorter compared to HPG-100 (t(1/2β,) 39.2 ± 8 h). The shorter circulation half life of LPG-100 was correlated with its higher renal clearance and deformability. Relatively lower organ accumulation was observed for LPG-100 and HPG-100 with some influence of on the architecture of the polymers. Since LPG showed better biocompatibility profiles, longer in vivo circulation time compared to PEG and other linear drug carrier polymers, and has multiple functionalities for conjugation, makes it a potential candidate for developing long circulating multifunctional drug delivery systems similar to HPG.


Biomacromolecules | 2011

Antibacterial Surfaces Based on Polymer Brushes: Investigation on the Influence of Brush Properties on Antimicrobial Peptide Immobilization and Antimicrobial Activity

Guangzheng Gao; Kai Yu; Jason Kindrachuk; Donald E. Brooks; Robert E. W. Hancock; Jayachandran N. Kizhakkedathu

Primary amine containing copolymer, poly(N,N-dimethylacrylamide-co-N-(3-aminopropyl)methacrylamide hydrochloride) (poly(DMA-co-APMA)), brushes were synthesized on Ti surface by surface-initiated atom transfer radical polymerization (SI-ATRP) in aqueous conditions. A series of poly(DMA-co-APMA) copolymer brushes on titanium (Ti) surface with different molecular weights, thicknesses, compositions, and graft densities were synthesized by changing the SI-ATRP reaction conditions. Cysteine-functionalized cationic antimicrobial peptide Tet213 (KRWWKWWRRC) was conjugated to the copolymers brushes using a maleimide-thiol addition reaction after initial modification of the grafted chains using 3-maleimidopropionic acid N-hydroxysuccinimide ester. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), and ellipsometry analysis. The conjugation of the Tet213 onto brushes strongly depended on graft density of the brushes at different copolymer brush compositions. The peptide density (peptides/nm(2)) on the surface varied with the initial composition of the copolymer brushes. Higher graft density of the brushes generated high peptide density (pepetide/nm(2)) and lower number of peptides/polymer chain and vice versa. The peptide density and graft density of the chains on surface greatly influenced the antimicrobial activity of peptide grafted polymer brushes against Pseudomonas aeruginosa.


Biomaterials | 2008

Hydrophobically derivatized hyperbranched polyglycerol as a human serum albumin substitute

Rajesh K. Kainthan; Johan Janzen; Jayachandran N. Kizhakkedathu; Dana V. Devine; Donald E. Brooks

There is a huge clinical demand for Human Serum Albumin (HSA), with a world market of approximately


Langmuir | 2009

Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.

Jayachandran N. Kizhakkedathu; Johan Janzen; Yevgeniya Le; Rajesh K. Kainthan; Donald E. Brooks

1.5B/year. Concern over prion and viral transmission in the blood supply has led to a need for safer substitutes and offers the opportunity for development of materials with enhanced properties over the presently available plasma expanders. We report here the synthesis and testing of a new synthetic plasma expander that can replace not only the osmotic and volume expansion properties of HSA but, uniquely, its binding and transport properties. We have synthesized several hyperbranched polyglycerols derivatized with hydrophobic groups and short poly(ethylene glycol) (PEG) chains. The hydrophobic groups provide regions for binding fatty acids and other hydrophobic materials while PEG imparts the necessary protection from host defense systems and enhances circulation longevity. These polymers, being hyperbranched, have only a small effect on plasma viscosity. We have shown in vitro that our materials bind 2-3 moles palmitic acid per mole, do not activate the platelet, coagulation or complement systems and do not cause red cell aggregation. In mice these materials are non-toxic with circulation half-lives as high as 34h, controllable by manipulating the molecular weight and the degree of PEG derivatization.


Blood | 2014

Nontoxic polyphosphate inhibitors reduce thrombosis while sparing hemostasis

Richard J. Travers; Rajesh A. Shenoi; Manu Thomas Kalathottukaren; Jayachandran N. Kizhakkedathu; James H. Morrissey

Three hydrolytically stable polyethyleneglycol (PEG)-based N-substituted acrylamide macromonomers, methoxypolyethyleneglycol (350) acrylamide (MPEG350Am) methoxypolyethyleneglycol (750) acrylamide(MPEG750Am) and methoxypolyethyleneglycol (2000)acrylamide (MPEG2000Am) with increasing PEG chain length were synthesized. Surface-initiated aqueous atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10-hexamethyl triethylene tetramine (HMTETA) catalyst was utilized to generate dense polymer brushes from these monomers via an ester linker group on the surface of model polystyrene (PS) particles. The molecular weight, hydrodynamic thickness, and graft densities of the grafted polymer layers were controlled by changing the reaction parameters of monomer concentration, addition of Cu(II)Cl2, and sodium chloride. The graft densities of surface-grafted brushes decreased with increasing PEG macromonomer chain length, 350 > 750 >> 2000, under similar experimental conditions. The molecular weight of grafts increased with increase in monomer concentration, and only selected conditions produced narrow distributed polymer chains. The molecular weight of grafted polymer chains differs significantly to those formed in solution. The hydrodynamic thicknesses of the grafted polymer layers were fitted to the Daoud and Cotton model (DCM) for brush height on spherical surfaces. The results show that the size of the pendent groups on the polymer chains has a profound effect on the hydrodynamic thickness of the brush for a given degree of polymerization. The new PEG-based surfaces show good protection against nonspecific protein adsorption from blood plasma compared to the bare surface. Protein adsorption decreased with increasing surface density of grafted polymer chains. Poly(MPEG750Am) brushes were more effective in preventing protein adsorption than poly(MPEG350Am) even at low graft densities, presumably due to the increase in PEG content in the grafted layer.


Biomacromolecules | 2011

Synthesis and Characterization of Carboxylic Acid Conjugated, Hydrophobically Derivatized, Hyperbranched Polyglycerols as Nanoparticulate Drug Carriers for Cisplatin

Lucy Ye; Kevin Letchford; Markus Heller; Richard Liggins; Dechi Guan; Jayachandran N. Kizhakkedathu; Donald E. Brooks; John K. Jackson; Helen M. Burt

Polyphosphate (polyP) is secreted by activated platelets and has been shown to contribute to thrombosis, suggesting that it could be a novel antithrombotic target. Previously reported polyP inhibitors based on polycationic substances, such as polyethylenimine, polyamidoamine dendrimers, and polymyxin B, although they attenuate thrombosis, all have significant toxicity in vivo, likely due to the presence of multiple primary amines responsible for their polyP binding ability. In this study, we examined a novel class of nontoxic polycationic compounds initially designed as universal heparin reversal agents (UHRAs) to determine their ability to block polyP procoagulant activity and also to determine their utility as antithrombotic treatments. Several UHRA compounds strongly inhibited polyP procoagulant activity in vitro, and 4 were selected for further examination in mouse models of thrombosis and hemostasis. Compounds UHRA-9 and UHRA-10 significantly reduced arterial thrombosis in mice. In mouse tail bleeding tests, administration of UHRA-9 or UHRA-10 was associated with significantly less bleeding compared with therapeutically equivalent doses of heparin. Thus, these compounds offer a new platform for developing novel antithrombotic agents that target procoagulant anionic polymers such as polyP with reduced toxicity and bleeding side effects.

Collaboration


Dive into the Jayachandran N. Kizhakkedathu's collaboration.

Top Co-Authors

Avatar

Donald E. Brooks

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Benjamin F.L. Lai

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Rajesh A. Shenoi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kai Yu

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Iren Constantinescu

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Rajesh K. Kainthan

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Yuquan Zou

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Charles A. Haynes

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Caigan Du

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge