Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jayaprakash K. Nair is active.

Publication


Featured researches published by Jayaprakash K. Nair.


Journal of the American Chemical Society | 2014

Multivalent N‑Acetylgalactosamine-Conjugated siRNA Localizes in Hepatocytes and Elicits Robust RNAi-Mediated Gene Silencing

Jayaprakash K. Nair; Jennifer L. S. Willoughby; Amy Chan; Klaus Charisse; Md. Rowshon Alam; Qianfan Wang; Menno Hoekstra; Pachamuthu Kandasamy; Alexander V. Kel’in; Nate Taneja; Jonathan O′Shea; Sarfraz Shaikh; Ligang Zhang; Ronald J. van der Sluis; Michael E. Jung; Akin Akinc; Renta Hutabarat; Satya Kuchimanchi; Kevin Fitzgerald; Tracy Zimmermann; Theo J.C. van Berkel; Martin Maier; Kallanthottathil G. Rajeev; Muthiah Manoharan

Conjugation of small interfering RNA (siRNA) to an asialoglycoprotein receptor ligand derived from N-acetylgalactosamine (GalNAc) facilitates targeted delivery of the siRNA to hepatocytes in vitro and in vivo. The ligands derived from GalNAc are compatible with solid-phase oligonucleotide synthesis and deprotection conditions, with synthesis yields comparable to those of standard oligonucleotides. Subcutaneous (SC) administration of siRNA-GalNAc conjugates resulted in robust RNAi-mediated gene silencing in liver. Refinement of the siRNA chemistry achieved a 5-fold improvement in efficacy over the parent design in vivo with a median effective dose (ED50) of 1 mg/kg following a single dose. This enabled the SC administration of siRNA-GalNAc conjugates at therapeutically relevant doses and, importantly, at dose volumes of ≤1 mL. Chronic weekly dosing resulted in sustained dose-dependent gene silencing for over 9 months with no adverse effects in rodents. The optimally chemically modified siRNA-GalNAc conjugates are hepatotropic and long-acting and have the potential to treat a wide range of diseases involving liver-expressed genes.


Nature Medicine | 2015

An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia

Alfica Sehgal; Scott Barros; Lacramioara Ivanciu; Brian C. Cooley; June Qin; Tim Racie; Julia Hettinger; Mary Carioto; Yongfeng Jiang; Josh Brodsky; Harsha Prabhala; Xuemei Zhang; Husain Attarwala; Renta Hutabarat; Don Foster; Klaus Charisse; Satya Kuchimanchi; Martin Maier; Lubo Nechev; Pachamuthu Kandasamy; Alexander V. Kelin; Jayaprakash K. Nair; Kallanthottathil G. Rajeev; Muthiah Manoharan; Rachel Meyers; Benny Sorensen; Amy Simon; Yesim Dargaud; Claude Negrier; Rodney M. Camire

Hemophilia A and B are inherited bleeding disorders characterized by deficiencies in procoagulant factor VIII (FVIII) or factor IX (FIX), respectively. There remains a substantial unmet medical need in hemophilia, especially in patients with inhibitory antibodies against replacement factor therapy, for novel and improved therapeutic agents that can be used prophylactically to provide effective hemostasis. Guided by reports suggesting that co-inheritance of prothrombotic mutations may ameliorate the clinical phenotype in hemophilia, we developed an RNA interference (RNAi) therapeutic (ALN-AT3) targeting antithrombin (AT) as a means to promote hemostasis in hemophilia. When administered subcutaneously, ALN-AT3 showed potent, dose-dependent, and durable reduction of AT levels in wild-type mice, mice with hemophilia A, and nonhuman primates (NHPs). In NHPs, a 50% reduction in AT levels was achieved with weekly dosing at approximately 0.125 mg/kg, and a near-complete reduction in AT levels was achieved with weekly dosing at 1.5 mg/kg. Treatment with ALN-AT3 promoted hemostasis in mouse models of hemophilia and led to improved thrombin generation in an NHP model of hemophilia A with anti-factor VIII inhibitors. This investigational compound is currently in phase 1 clinical testing in subjects with hemophilia A or B.


ChemBioChem | 2015

Hepatocyte‐Specific Delivery of siRNAs Conjugated to Novel Non‐nucleosidic Trivalent N‐Acetylgalactosamine Elicits Robust Gene Silencing in Vivo

Kallanthottathil G. Rajeev; Jayaprakash K. Nair; Muthusamy Jayaraman; Klaus Charisse; Nate Taneja; Jonathan O'Shea; Jennifer L. S. Willoughby; Kristina Yucius; Tuyen Nguyen; Svetlana Shulga-Morskaya; Abigail Liebow; William Querbes; Anna Borodovsky; Kevin Fitzgerald; Martin Maier; Muthiah Manoharan

We recently demonstrated that siRNAs conjugated to triantennary N‐acetylgalactosamine (GalNAc) induce robust RNAi‐mediated gene silencing in the liver, owing to uptake mediated by the asialoglycoprotein receptor (ASGPR). Novel monovalent GalNAc units, based on a non‐nucleosidic linker, were developed to yield simplified trivalent GalNAc‐conjugated oligonucleotides under solid‐phase synthesis conditions. Synthesis of oligonucleotide conjugates using monovalent GalNAc building blocks required fewer synthetic steps compared to the previously optimized triantennary GalNAc construct. The redesigned trivalent GalNAc ligand maintained optimal valency, spatial orientation, and distance between the sugar moieties for proper recognition by ASGPR. siRNA conjugates were synthesized by sequential covalent attachment of the trivalent GalNAc to the 3′‐end of the sense strand and resulted in a conjugate with in vitro and in vivo potency similar to that of the parent trivalent GalNAc conjugate design.


Molecular therapy. Nucleic acids | 2014

Shielding of Lipid Nanoparticles for siRNA Delivery: Impact on Physicochemical Properties, Cytokine Induction, and Efficacy.

Varun Kumar; June Qin; Yongfeng Jiang; Richard G. Duncan; Benjamin Brigham; Shannon Fishman; Jayaprakash K. Nair; Akin Akinc; Scott Barros; Pia Kasperkovitz

Formulation of short interfering RNA (siRNA) into multicomponent lipid nanoparticles (LNP) is an effective strategy for hepatic delivery and therapeutic gene silencing. This study systematically evaluated the effect of polyethylene glycol (PEG) density on LNP physicochemical properties, innate immune response stimulation, and in vivo efficacy. Increased PEG density not only shielded LNP surface charge but also reduced hemolytic activity, suggesting the formation of a steric barrier. In addition, increasing the PEG density reduced LNP immunostimulatory potential as reflected in cytokine induction both in vivo and in vitro. Higher PEG density also hindered in vivo efficacy, presumably due to reduced association with apolipoprotein E (ApoE), a protein which serves as an endogenous targeting ligand to hepatocytes. This effect could be overcome by incorporating an exogenous targeting ligand into the highly shielded LNPs, thereby circumventing the requirement for ApoE association. Therefore, these studies provide useful information for the rational design of LNP-based siRNA delivery systems with an optimal safety and efficacy profile.


Angewandte Chemie | 2016

Sequence‐Defined Oligomers from Hydroxyproline Building Blocks for Parallel Synthesis Applications

Rosemary Lynn Kanasty; Arturo Vegas; Luke M. Ceo; Martin Maier; Klaus Charisse; Jayaprakash K. Nair; Robert Langer; Daniel G. Anderson

The functionality of natural biopolymers has inspired significant effort to develop sequence-defined synthetic polymers for applications including molecular recognition, self-assembly, and catalysis. Conjugation of synthetic materials to biomacromolecules has played an increasingly important role in drug delivery and biomaterials. We developed a controlled synthesis of novel oligomers from hydroxyproline-based building blocks and conjugated these materials to siRNA. Hydroxyproline-based monomers enable the incorporation of broad structural diversity into defined polymer chains. Using a perfluorocarbon purification handle, we were able to purify diverse oligomers through a single solid-phase extraction method. The efficiency of synthesis was demonstrated by building 14 unique trimers and 4 hexamers from 6 diverse building blocks. We then adapted this method to the parallel synthesis of hundreds of materials in 96-well plates. This strategy provides a platform for the screening of libraries of modified biomolecules.


Nucleic Acids Research | 2017

Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates

Jayaprakash K. Nair; Husain Attarwala; Alfica Sehgal; Qianfan Wang; Krishna Aluri; Xuemei Zhang; Minggeng Gao; Ju Liu; Ramesh Indrakanti; Sally Schofield; Philip Kretschmer; Christopher R. Brown; Swati Gupta; Jennifer L. S. Willoughby; Julie A. Boshar; Vasant Jadhav; Klaus Charisse; Tracy Zimmermann; Kevin Fitzgerald; Muthiah Manoharan; Kallanthottathil G. Rajeev; Akin Akinc; Renta Hutabarat; Martin Maier

Abstract Covalent attachment of a synthetic triantennary N-acetylagalactosamine (GalNAc) ligand to chemically modified siRNA has enabled asialoglycoprotein (ASGPR)-mediated targeted delivery of therapeutically active siRNAs to hepatocytes in vivo. This approach has become transformative for the delivery of RNAi therapeutics as well as other classes of investigational oligonucleotide therapeutics to the liver. For efficient functional delivery of intact drug into the desired subcellular compartment, however, it is critical that the nucleic acids are stabilized against nucleolytic degradation. Here, we compared two siRNAs of the same sequence but with different modification pattern resulting in different degrees of protection against nuclease activity. In vitro stability studies in different biological matrices show that 5′-exonuclease is the most prevalent nuclease activity in endo-lysosomal compartments and that additional stabilization in the 5′-regions of both siRNA strands significantly enhances the overall metabolic stability of GalNAc–siRNA conjugates. In good agreement with in vitro findings, the enhanced stability translated into substantially improved liver exposure, gene silencing efficacy and duration of effect in mice. Follow-up studies with a second set of conjugates targeting a different transcript confirmed the previous results, provided additional insights into kinetics of RISC loading and demonstrated excellent translation to non-human primates.


Molecular therapy. Nucleic acids | 2016

A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo

Justin B. Lee; Kaixin Zhang; Yuen Yi C. Tam; Joslyn Quick; Ying K. Tam; Paulo Jc Lin; Sam Chen; Yan Liu; Jayaprakash K. Nair; Ivan Zlatev; Kallanthottathil G. Rajeev; Muthiah Manoharan; Paul S. Rennie; Pieter R. Cullis

The androgen receptor plays a critical role in the progression of prostate cancer. Here, we describe targeting the prostate-specific membrane antigen using a lipid nanoparticle formulation containing small interfering RNA designed to silence expression of the messenger RNA encoding the androgen receptor. Specifically, a Glu-urea-Lys PSMA-targeting ligand was incorporated into the lipid nanoparticle system formulated with a long alkyl chain polyethylene glycol-lipid to enhance accumulation at tumor sites and facilitate intracellular uptake into tumor cells following systemic administration. Through these features, and by using a structurally refined cationic lipid and an optimized small interfering RNA payload, a lipid nanoparticle system with improved potency and significant therapeutic potential against prostate cancer and potentially other solid tumors was developed. Decreases in serum prostate-specific antigen, tumor cellular proliferation, and androgen receptor levels were observed in a mouse xenograft model following intravenous injection. These results support the potential clinical utility of a prostate-specific membrane antigen–targeted lipid nanoparticle system to silence the androgen receptor in advanced prostate cancer.


Molecular Therapy | 2018

Evaluation of GalNAc-siRNA Conjugate Activity in Pre-clinical Animal Models with Reduced Asialoglycoprotein Receptor Expression

Jennifer L. S. Willoughby; Amy Chan; Alfica Sehgal; James Butler; Jayaprakash K. Nair; Tim Racie; Svetlana Shulga-Morskaya; Tuyen Nguyen; Kun Qian; Kristina Yucius; Klaus Charisse; Theo J.C. van Berkel; Muthiah Manoharan; Kallanthottathil G. Rajeev; Martin Maier; Vasant Jadhav; Tracy Zimmermann

The hepatocyte-specific asialoglycoprotein receptor (ASGPR) is an ideal candidate for targeted drug delivery to the liver due to its high capacity for substrate clearance from circulation together with its well-conserved expression and function across species. The development of GalNAc-siRNA conjugates, in which a synthetic triantennary N-acetylgalactosamine-based ligand is conjugated to chemically modified siRNA, has enabled efficient, ASGPR-mediated delivery to hepatocytes. To investigate the potential impact of variations in receptor expression on the efficiency of GalNAc-siRNA conjugate delivery, we evaluated the pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates in multiple pre-clinical models with reduced receptor expression. Despite greater than 50% reduction in ASGPR levels, GalNAc conjugate activity was retained, suggesting that the remaining receptor capacity was sufficient to mediate efficient uptake of potent GalNAc-siRNAs at pharmacologically relevant dose levels. Collectively, our data support a broad application of the GalNAc-siRNA technology for hepatic targeting, including disease states where ASGPR expression may be reduced.


ACS Chemical Biology | 2015

siRNA Conjugates Carrying Sequentially Assembled Trivalent N-Acetylgalactosamine Linked Through Nucleosides Elicit Robust Gene Silencing In Vivo in Hepatocytes

Shigeo Matsuda; Kristofer Keiser; Jayaprakash K. Nair; Klaus Charisse; Rajar M. Manoharan; Philip Kretschmer; Chang G. Peng; Alexander V. Kel’in; Pachamuthu Kandasamy; Jennifer L. S. Willoughby; Abigail Liebow; William Querbes; Kristina Yucius; Tuyen Nguyen; Martin Maier; Kallanthottathil G. Rajeev; Muthiah Manoharan


Archive | 2014

Oligonucleotide-ligand conjugates and process for their preparation

Muthiah Manoharan; Jayaprakash K. Nair; Pachamuthu Kandasamy; Shigeo Matsuda; Alexander V. Kelin; Muthusamy Jayaraman; Kallanthottathil G. Rajeev

Collaboration


Dive into the Jayaprakash K. Nair's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Maier

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akin Akinc

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tuyen Nguyen

Alnylam Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge