Jayaraj Nithyanandhan
Academy of Scientific and Innovative Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jayaraj Nithyanandhan.
ACS Applied Materials & Interfaces | 2016
Ananthan Alagumalai; M K Munavvar Fairoos; Punitharasu Vellimalai; Manik Chandra Sil; Jayaraj Nithyanandhan
Squaraine dyes are promising chromophores to harvest visible and near-infrared (NIR) photons. A series of indoline-based unsymmetrical squaraine (SQ) dyes that contain alkyl chains at sp3 C- and N- atoms of indoline moieties with a carboxylic acid anchoring group were synthesized. The optical and electrochemical properties of the SQ dyes in solution were nearly identical as there was no change in the D-A-D SQ framework; however, remarkable changes with respect to the power conversion efficiencies (PCE) were observed depending upon the position of alkyl groups in the dye. Introduction of alkyl groups to the indoline unit that was away from anchoring unit were helped in more dye loading with controlled organization of dyes on surface, increased charge transfer resistance, long electron lifetime, and hence higher PCE than that of the corresponding isomer in which the alkyl groups funtionalized indoline unit contains the carboxylic acid anchoring group. Careful analysis of incident photon-to-current conversion efficiency (IPCE) profiles indicated the presence of aggregated structure on the TiO2 surface that contributes to the charge injection in the presence of a coadsorbent. A dye-sensitized solar cell (DSSC) device made out of SQ5 was achieved an efficiency of 9.0%, with an open-circuit potential (Voc) of 660 mV and short-circuit current density (Jsc) of 19.82 mA/cm2, under simulated AM 1.5G illumination (100 mW/cm2). The IPCE profile of SQ5 shows an onset near to 750 nm with a good quantum efficiency (>80%) in the range of 550-700 nm, indicating the importance of self-organization of dyes on the TiO2 surface for an efficient charge injection. This present investigation revealed the importance of position of alkyl groups in the squaraine-based dyes for the better PCE.
ACS Applied Materials & Interfaces | 2017
Manik Chandra Sil; Vediappan Sudhakar; Munavvar Fairoos Mele Kavungathodi; Vellimalai Punitharasu; Jayaraj Nithyanandhan
Organic dyes possessing conjugated π-framework forms closely packed monolayers on photoanode in dye-sensitized solar cell (DSSC), because of the limitation to control the orientation and the extend of intermolecular π-π interaction, self-aggregation of dyes leads to reduced cell performance. In this report, a series of homodimeric (D1-D1 and D2-D2) and heterodimeric (D1-D2 and D2-D4) donor/acceptor (D/A) dyes containing spiroBiProDOT π-spacer were designed and synthesized by utilizing Pd-catalyzed direct arylation reaction and correlates the device performance with monomeric dyes (D1 and D2). Both the thiophenes (π-spacer) of spiroBiProDOT were functionalized with same or different donor groups which led to homodimeric and heterodimeric chromophores in a single sensitizer. The homodimeric spiro-dye D1-D1 showed higher power conversion efficiency (PCE), of 7.6% with a Voc and Jsc of 0.672 V and 16.16 mA/cm2, respectively. On the other hand, the monomeric D1 exhibited a PCE of 3.2% (Voc of 0.64 V and Jsc of 7.2 mA/cm2), which is lower by 2.4 fold compared to dimeric analogue. The spiro-unit provides flexibility between the incorporated chromophores to orient on TiO2 due to four sp3-centers, which arrest the molecular motions after chemisorption. This study shows a new molecular approach to incorporate two chromophores in the dimeric dye possessing complementary absorption characteristics toward panchromatic absorption. The attenuated charge recombination at TiO2/Dye/redox couple interface in case of D1-D1, owing to better passivation of TiO2 surface, was elucidated through impedance analysis. The FT-IR spectrum of D1-D1 adsorbed on TiO2 film indicated both the carboxylic units were involved in chemisorption which makes strong coupling between dye and TiO2.
Journal of Materials Chemistry | 2016
Neeta Karjule; M K Munavvar Fairoos; Jayaraj Nithyanandhan
Unsymmetrical squaraine sensitizers with two different donor moieties, triphenylamine (NSQR) and heterotriangulene (NSQ1–3), for dye-sensitized solar cells (DSSCs) have been designed and synthesized. These dyes utilize the indolium moiety to control charge recombination dynamics at the TiO2-dye-electrolyte interface by connecting linear and branched alkyl functionalities. In the present study, an efficient heterotriangulene (HT) donor and a branched alkyl group at sp3-C atoms were strategically incorporated to increase the power conversion efficiency (PCE) of zwitterionic dyes by improving photo-current density (Jsc) and open-circuit potential (Voc) of the cell. Among these four dyes, NSQ3 exhibited the highest efficiency of 6.73% with a Jsc of 18.74 mA cm−2, Voc of 0.53 V, and fill factor (ff) of 68.3%, without any co-adsorbent under an irradiance of 100 mW cm−2 (simulated AM 1.5G sunlight). In the presence of 3α,7α-dihydroxy-5β-cholanic acid (CDCA), NSQ1, NSQ2 and NSQ3 showed an efficiency of 7.07%, 7.38% and 7.17%, respectively. Despite the low Voc, far red light harvesting efficiency, reduced dye aggregation, long lifetime (τ) of injected electrons and high quantum efficiency of NSQ1–3 played constructive roles in achieving high PCE efficiency. Deceleration of charge recombination for NSQ dye cells was further studied by electrochemical impedance spectroscopy (EIS) and open-circuit photo-voltage decay (OCVD) measurements.
ACS Applied Materials & Interfaces | 2018
Vellimalai Punitharasu; Munavvar Fairoos Mele Kavungathodi; Jayaraj Nithyanandhan
To synergize both steric and electronic factors in designing the dyes for dye-sensitized solar cells, a series of cis-configured unsymmetrical squaraine dyes P11-P15 with suitably functionalized alkyl groups and squaric acid units containing the electron-withdrawing groups were synthesized, respectively. These dyes capture the importance of (i) the effect and position of branched alkyl groups, (ii) mono- and di-anchoring groups containing dyes, and (iii) further appending the alkyl groups through the cyanoester vinyl unit on the central squaric acid units of D-A-D-based cis-configured squaraine dyes. All the above factors govern the controlled self-assembly of the dyes on the TiO2 surface which helps to broaden the absorption profile of the dyes with an increased energy-harvesting process. With respect to the position of the branched alkyl groups, dye P11 with the sp3-C and N-alkyl groups away from the TiO2 surface showed a better device efficiency of 5.98% ( Jsc of 14.46 mA cm-2, Voc of 0.576 V, and ff of 71.8%) than its positional isomer P12 with 3.45% ( Jsc of 8.78 mA cm-2, Voc of 0.554 V, and ff of 70.9%). However, with respect to the dyes containing mono- and di-anchoring groups, P13 with two anchoring units exhibited a superior device performance of 7.58% ( Jsc of 17.12 mA cm-2, Voc of 0.618 V, and ff of 71.7%) in the presence of optically transparent co-adsorbent CDCA (3α,7α-dihydroxy-5β-cholanic acid) than dyes P11 and P12.
Chemistry: A European Journal | 2018
Rajesh Bisht; Munavvar Fairoos Mele Kavungathodi; Jayaraj Nithyanandhan
A series of near-infrared (NIR)-responsive unsymmetrical squaraine dyes (ISQ1-3) incorporating a fused indenoquinaldine-based donor have been designed and synthesized. C12 alkyl chains were incorporated at the sp3 -hybridized carbon center of the indene unit of the indenoquinaldine in an out-of-plane orientation to control dye aggregation on the surface of titanium dioxide, and indole (ISQ1), benzo[e]indole (ISQ2), and quinoline (ISQ3) moieties were included as the donor component bearing the anchoring carboxy group to extend the absorption in the NIR region and to systematically study the effect of the electronic modification on the performance of dye-sensitized solar cells (DSSC). All the dyes exhibit intense absorption (ϵ≥105 m-1 cm-1 ) in the NIR region, and the dye-adsorbed TiO2 films exhibit broad panchromatic absorption. The incident photon-to-current efficiency (IPCE) spectrum of the ISQ3-based DSSC device displays a panchromatic IPCE response up to 880 nm. Additionally, the ISQ3-sensitized device provides the best efficiency of 4.15 % with a short circuit current density (JSC ) of 10.02 mA cm-2 , open-circuit voltage (VOC ) of 0.58 V, and fill factor (ff) of 72 % in the presence of 10 equivalents of 3α,7α-dihydroxy-5β-cholanic acid (CDCA). Electrochemical impedance spectroscopy analysis showed attenuated charge recombination in the ISQ3-sensitized DSSC, which contributes to its higher value of VOC compared with the other dyes.
ACS Applied Materials & Interfaces | 2017
Vellimalai Punitharasu; Munavvar Fairoos Mele Kavungathodi; Jayaraj Nithyanandhan
Far-red-absorbing squaraines possessing high molar absorptivity (>105 M-1 cm-1) are being attracted as high-efficiency chromophores in dye-sensitized solar cells (DSSCs). A series of donor-acceptor-donor-π spacer-acceptor (D-A-D-π-A) unsymmetrical squaraines, PSQ1-5, with indoline donor and squaric/cyanoacetic acid acceptor units, were designed for sensitized solar cells. For extending the absorption toward the near-infrared region (NIR) and controlling the orientation on the TiO2 surface, benzene (PSQ1 and PSQ2) and thiophene (PSQ3-5) π-spacers and out-of-plane branched alkyl groups at the indoline that are away (PSQ1, PSQ3, and PSQ5) or near (PSQ2 and PSQ4) the anchoring group, respectively, were introduced. Dynamic aggregation tendency of PSQ1 and PSQ3 than that of their isomers systematically modulates the orientation on the TiO2 surface, which in turn enhances photovoltaic performance. Absorptance on a thin transparent TiO2 film shows a visible-to-NIR response with an onset around 800 nm for PSQ3-5. Although there is close resemblance in electrochemical redox levels, their high injection efficiency and recombination resistance differentiated their impact on the way of anchoring and the dihedral angle between D-A-D units and π-spacers. DSSCs sensitized with PSQ5 achieved a PCE of 8.15% under simulated AM 1.5G illumination (100 mW cm-2), with the current density (Jsc) and open-circuit voltage (Voc) of 19.73 mA cm-2 and 630 mV, respectively. A clear comparison of the incident-photon-to-current conversion efficiency versus the light-harvesting efficiency correlates the structure-property relationship with Jsc obtained for PSQ dyes. Electrochemical impedance spectroscopy was carried out to examine the TiO2/dye/electrolyte interface for further confirmation of the enhanced PCE of top-sp3-alkylated PSQ5 over that of other dyes.
Journal of Physical Chemistry C | 2017
Neeta Karjule; Munavvar Fairoos Mele Kavungathodi; Jayaraj Nithyanandhan
Dyes and Pigments | 2019
Manik Chandra Sil; Munavvar Fairoos Mele Kavungathodi; Jayaraj Nithyanandhan
Photochemical and Photobiological Sciences | 2018
Rajesh Bisht; Saumya Singh; Kothandam Krishnamoorthy; Jayaraj Nithyanandhan
Journal of Photochemistry and Photobiology A-chemistry | 2018
Neeta Karjule; Mrityunjay K. Sharma; Jayaraj Nithyanandhan; Amol A. Kulkarni
Collaboration
Dive into the Jayaraj Nithyanandhan's collaboration.
Munavvar Fairoos Mele Kavungathodi
Council of Scientific and Industrial Research
View shared research outputs