Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jayati Mullick is active.

Publication


Featured researches published by Jayati Mullick.


The EMBO Journal | 1999

Dual targeting of cytochrome P4502B1 to endoplasmic reticulum and mitochondria involves a novel signal activation by cyclic AMP‐dependent phosphorylation at Ser128

Hindupur K. Anandatheerthavarada; Gopa Biswas; Jayati Mullick; Naresh Babu V. Sepuri; Laszlo Otvos; Debkumar Pain; Narayan G. Avadhani

We have investigated mechanisms of mitochondrial targeting of the phenobarbital‐inducible hepatic mitochondrial P450MT4, which cross‐reacts with antibody to microsomal P4502B1. Results show that P4502B1 and P450MT4 have identical primary sequence but different levels of phosphorylation and secondary structure. We demonstrate that P4502B1 contains a chimeric mitochondrial and endoplasmic reticulum (ER) targeting signal at its N‐terminus. Inducers of cAMP and protein kinase A‐mediated phosphorylation of P4502B1 at Ser128 activate the signal for mitochondrial targeting and modulate its mitochondrial or ER destination. S128A mutation inhibits in vitro mitochondrial transport and also in vivo mitochondrial targeting in COS cells. A fragment of P4502B1 containing the N‐terminal signal and the phosphorylation site could drive the transport of dihydrofolate reductase (DHFR) into mitochondria. Ser128 phosphorylation reduced the affinity of 2B1 protein for binding to SRP, but increased the affinity of the 2B1–DHFR fusion protein for binding to yeast mitochondrial translocase proteins, TOM40 and TIM44, and matrix Hsp70. We describe a novel regulatory mechanism by which cAMP modulates the targeting of a protein to two distinct organelles.


Progress in Nucleic Acid Research and Molecular Biology | 1998

STRUCTURAL ORGANIZATION AND TRANSCRIPTION REGULATION OF NUCLEAR GENES ENCODING THE MAMMALIAN CYTOCHROME C OXIDASE COMPLEX

Nibedita Lenka; C. Vijayasarathy; Jayati Mullick; Narayan G. Avadhani

Cytochrome c Oxidase (COX) is the terminal component of the bacterial as well as the mitochondrial respiratory chain complex that catalyzes the conversion of redox energy to ATP. In eukaryotes, the oligomeric enzyme is bound to mitochondrial innermembrane with subunits ranging from 7 to 13. Thus, its biosynthesis involves a coordinate interplay between nuclear and mitochondrial genomes. The largest subunits, I, II, and III, which represent the catalytic core of the enzyme, are encoded by the mitochondrial DNA and are synthesized within the mitochondria. The rest of the smaller subunits implicated in the regulatory function are encoded on the nuclear DNA and imported into mitochondria following their synthesis in the cytosol. Some of the nuclear coded subunits are expressed in tissue and developmental specific isologs. The ubiquitous subunits IV, Va, Vb, VIb, VIc, VIIb, VIIc, and VIII (L) are detected in all the tissues, although the mRNA levels for the individual subunits vary in different tissues. The tissue specific isologs VIa (H), VIIa (H), and VIII (H) are exclusive to heart and skeletal muscle. cDNA sequence analysis of nuclear coded subunits reveals 60 to 90% conservation among species both at the amino acid and nucleotide level, with the exception of subunit VIII, which exhibits 40 to 80% interspecies homology. Functional genes for COX subunits IV, Vb, VIa L & H, VIIa L & H, VIIc and VIII (H) from different mammalian species and their 5 flanking putative promoter regions have been sequenced and extensively characterized. The size of the genes range from 2 to 10 kb in length. Although the number of introns and exons are identical between different species for a given gene, the size varies across the species. A majority of COX genes investigated, with the exception of muscle-specific COXVIII(H) gene, lack the canonical TATAA sequence and contain GC-rich sequences at the immediate upstream region of transcription start site(s). In this respect, the promoter structure of COX genes resemble those of many house-keeping genes. The ubiquitous COX genes show extensive 5 heterogeneity with multiple transcription initiation sites that bind to both general as well as specialized transcription factors such as YY1 and GABP (NRF2/ets). The transcription activity of the promoter in most of the ubiquitous genes is regulated by factors binding to the 5 upstream Sp1, NRF1, GABP (NRF2), and YY1 sites. Additionally, the murine COXVb promoter contains a negative regulatory region that encompasses the binding motifs with partial or full consensus to YY1, GTG, CArG, and ets. Interestingly, the muscle-specific COX genes contain a number of striated muscle-specific regulatory motifs such as E box, CArG, and MEF2 at the proximal promoter regions. While the regulation of COXVIa (H) gene involves factors binding to both MEF2 and E box in a skeletal muscle-specific fashion, the COXVIII (H) gene is regulated by factors binding to two tandomly duplicated E boxes in both skeletal and cardiac myocytes. The cardiac-specific factor has been suggested to be a novel bHLH protein. Mammalian COX genes provide a valuable system to study mechanisms of coordinated regulation of nuclear and mitochondrial genes. The presence of conserved sequence motifs common to several of the nuclear genes, which encode mitochondrial proteins, suggest a possible regulatory function by common physiological factors like heme/O2/carbon source. Thus, a well-orchestrated regulatory control and cross talks between the nuclear and mitochondrial genomes in response to changes in the mitochondrial metabolic conditions are key factors in the overall regulation of mitochondrial biogenesis.


Biochemical Pharmacology | 1998

Preferential effects of nicotine and 4-(N-methyl- N-nitrosamino)-1-(3-pyridyl)-1-butanone on mitochondrial glutathione S-transferase a4-4 induction and increased oxidative stress in the rat brain

Shripad V. Bhagwat; C. Vijayasarathy; Haider Raza; Jayati Mullick; Narayan G. Avadhani

We have investigated the in vivo effects of the tobacco-specific toxins nicotine and 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) on antioxidant defense systems in the mitochondrial, microsomal, and cytosolic compartments of rat brain, lung, and liver. Nicotine induced maximum oxidative stress in brain mitochondria, as seen from a 1.9-fold (P < 0.001) increase in thiobarbituric acid-reactive substance (TBARS) and a 2-fold (P < 0.001) increase in glutathione S-transferase (GST) A4-4 (also referred to as rGST 8-8) activities. These changes were accompanied by a 25-40% increase in reactive oxygen species and a 20-30% decrease in alcohol dehydrogenase activities. The 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone-induced oxidative damage was apparent in the microsomal fraction of brain, lung, and liver, and it also increased 4-hydroxynonenal specific GST A4-4 activity in the brain and lung mitochondrial matrix fraction. The levels of microsomal thiobarbituric acid reactive substance, cytochrome P4502E1 activity, and reactive oxygen species were also increased significantly (P < 0.001) in all tissues. Both of these toxins induced the level of GST A4-4 mRNA in the brain, while they caused a marked reduction in the liver GST A4-4 mRNA pool. Additionally, the brain mitochondrial matrix showed a markedly higher level of 4-hydroxynonenal specific GST activity and mGST A4-4 antibody-reactive protein than did the cytosolic fraction. In conclusion, the present study provides evidence for the occurrence of GST A4-4 enzyme activity in mammalian mitochondria, in addition to demonstrating that both mitochondria and microsomes are intracellular targets for nicotine- and NNK-induced organ toxicity.


Journal of Biological Chemistry | 1999

Physiological Role of the N-terminal Processed P4501A1 Targeted to Mitochondria in Erythromycin Metabolism and Reversal of Erythromycin-mediated Inhibition of Mitochondrial Protein Synthesis

Hindupur K. Anandatheerthavarada; C. Vijayasarathy; Shripad V. Bhagwat; Gopa Biswas; Jayati Mullick; Narayan G. Avadhani

Recently, we showed that the major species of β-naphthoflavone-inducible rat liver mitochondrial P450MT2 consists of N-terminal truncated microsomal P4501A1 (+33/1A1) and that the truncated enzyme exhibits different substrate specificity as compared with intact P4501A1. The results of the present study show that P450MT2 targeted to COS cell mitochondria by transient transfection of P4501A1 cDNA is localized inside the mitochondrial inner membrane in a membrane-extrinsic orientation. Co-expression with wild type P4501A1 and adrenodoxin (Adx) cDNAs resulted in 5–7-fold higher erythromycin N-demethylation (ERND) in the mitochondrial fraction but minimal changes in the microsomal fraction of transfected cells. Erythromycin, a potent inhibitor of bacterial and mitochondrial protein synthesis, caused 8–12-fold higher accumulation of CYP1A1 mRNA, preferential accumulation of P450MT2, and 5–6-fold higher ERND activity in the mitochondrial compartment of rat C6 glioma cells. Consistent with the increased mitochondrial ERND activity, co-expression with P4501A1 and Adx in COS cells rendered complete protection against erythromycin-mediated mitochondrial translation inhibition. Mutations that specifically affect the mitochondrial targeting of P4501A1 also abolished protection against mitochondrial translation inhibition. These results for the first time suggest a physiological function for the xenobiotic inducible cytochrome P4501A1 against drug-mediated mitochondrial toxicity.


Journal of Biological Chemistry | 1997

Regulation of Murine Cytochrome Oxidase Vb Gene Expression in Different Tissues and during Myogenesis ROLE OF A YY-1 FACTOR-BINDING NEGATIVE ENHANCER

Aruna Basu; Nibedita Lenka; Jayati Mullick; Narayan G. Avadhani

The mouse cytochrome oxidase (COX) Vb promoter contains three sequence motifs with partial or full consensus for YY-1 and GTG factor binding and a CArG box, located between positions −480 and −390. Individually, all three motifs stimulated transcription of the TKCAT promoter, and bound distinctly different proteins from the liver and differentiated C2C12 nuclear extracts. Collectively, these motifs, together with the downstream flanking sequence, −378 to −320, suppressed the transcription activity of heterologous promoters, thymidine kinase-chloramphenicol acetyltransferase (TKCAT) and COXIV/CAT. The transcription activities of both TKCAT and COXIV/CAT constructs were induced 3-4-fold during induced myogenesis of C2C12 cells. The downstream CArG-like motif binds transcription factor YY-1, while the upstream YY-1-like motif binds to a yet unidentified factor. Co-expression with intact YY-1, but not that lacking the DNA binding domain suppressed the transcriptional activity. Mutations targeted to the CArG-like motif abolished the suppressive effect of the negative enhancer and the inducibility of the promoter during myogenic differentiation. Our results suggest that the activity of the negative enhancer may determine the level of expression of the COX Vb gene in different tissues.


The Journal of Steroid Biochemistry and Molecular Biology | 1999

Down-regulation of the rat hepatic sterol 27-hydroxylase: gene by bile acids in transfected primary hepatocytes: possible role of hepatic nuclear factor 1α

Yi-Ping Rao; Z. Reno Vlahcevic; R. Todd Stravitz; Darrell H. Mallonee; Jayati Mullick; Narayan G. Avadhani; Phillip B. Hylemon

In vitro and in vivo studies have shown that the sterol 27-hydroxylase (CYP27) gene is transcriptionally repressed by hydrophobic bile acids. The molecular mechanism(s) of repression of CYP27 by bile acids is unknown. To identify the bile acid responsive element (BARE) and transcription factor(s) that mediate the repression of CYP27 by bile acids, constructs of the CYP27 5-flanking DNA were linked to either the CAT or luciferase reporter gene and transiently transfected into primary rat hepatocytes. Taurocholate (TCA), taurodeoxycholate (TDCA) and taurochenodeoxycholate (TCDCA) significantly reduced CAT activities of the -840/+23, -329/+23, and -195/+23 mCAT constructs. A -76/+23 construct showed no regulation by bile acids. When a DNA fragment (-110/-86) from this region was cloned in front of an SV 40 promoter it showed down-regulation by TDCA. Super-electrophoretic mobility shift assays (EMSA) indicated that both HNF1alpha and C/EBP bind to the -110 to -86 bp DNA fragment. Recombinant rat HNF1alpha and C/EBPalpha competitively bound to this DNA fragment. Super-EMSA showed that TDCA addition to hepatocytes in culture decreased HNF1alpha, but not C/EBP, binding to the -110/-86 bp DNA fragment. A four base pair substitution mutation (-103 to -99) in this sequence eliminated TCA and TDCA regulation of the (-840/+23) construct. The substitution mutation also eliminated (>95%) HNF1alpha, but not C/EBP, binding to this DNA fragment. We conclude that bile acids repress CYP27 transcription through a putative BARE located between -110 and -86 bp of the CYP27 promoter. The data suggest that bile acids repress CYP27 transcriptional activity by decreasing HNF1alpha binding to the CYP27 promoter.


Journal of Virology | 2008

Identification of hot spots in the variola virus complement inhibitor (SPICE) for human complement regulation.

Viveka Nand Yadav; Kalyani Pyaram; Jayati Mullick; Arvind Sahu

ABSTRACT Variola virus, the causative agent of smallpox, encodes a soluble complement regulator named SPICE. Previously, SPICE has been shown to be much more potent in inactivating human complement than the vaccinia virus complement control protein (VCP), although they differ only in 11 amino acid residues. In the present study, we have expressed SPICE, VCP, and mutants of VCP by substituting each or more of the 11 non-variant VCP residues with the corresponding residue of SPICE to identify hot spots that impart functional advantage to SPICE over VCP. Our data indicate that (i) SPICE is ∼90-fold more potent than VCP in inactivating human C3b, and the residues Y98, Y103, K108 and K120 are predominantly responsible for its enhanced activity; (ii) SPICE is 5.4-fold more potent in inactivating human C4b, and residues Y98, Y103, K108, K120 and L193 mainly dictate this increase; (iii) the classical pathway decay-accelerating activity of activity is only twofold higher than that of VCP, and the 11 mutations in SPICE do not significantly affect this activity; (iv) SPICE possesses significantly greater binding ability to human C3b compared to VCP, although its binding to human C4b is lower than that of VCP; (v) residue N144 is largely responsible for the increased binding of SPICE to human C3b; and (vi) the human specificity of SPICE is dictated primarily by residues Y98, Y103, K108, and K120 since these are enough to formulate VCP as potent as SPICE. Together, these results suggest that principally 4 of the 11 residues that differ between SPICE and VCP partake in its enhanced function against human complement.


Journal of Biological Chemistry | 1996

The Role of an E Box Binding Basic Helix Loop Helix Protein in the Cardiac Muscle-specific Expression of the Rat Cytochrome Oxidase Subunit VIII Gene

Nibedita Lenka; Aruna Basu; Jayati Mullick; Narayan G. Avadhani

We have characterized the rat gene for muscle-specific cytochrome oxidase VIII (COX VIII(H)) and mapped the distal promoter region responsible for transcription activation in C2C12 skeletal myocytes and H9C2 cardiomyocytes. In both cell types, the promoter elements responding to the induced differentiation of myocytes map to two E boxes, designated as E1 and E2 boxes with a core sequence of CAGCTG. Gel mobility shift analysis showed that both E1 and E2 box motifs form complexes with nuclear extracts from H9C2 cardiomyocytes that were supershifted with monoclonal antibody to E2A but not with antibody to myo-D. Extracts from induced and uninduced H9C2 cardiomyocytes yielded different gel mobility patterns and also different E2A antibody supershifts suggesting a difference in the DNA-bound protein complexes cross-reacting with the E2A antibody. Transcriptional activity of the promoter construct containing intact E boxes was inhibited by coexpression with Id in differentiated H9C2 cardiomyocytes. Our results show the involvement of an E box binding basic helix loop helix protein in the cardiac muscle-specific regulation of the COX VIII(H) promoter.


Journal of Biological Chemistry | 2006

Functional Characterization of the Complement Control Protein Homolog of Herpesvirus Saimiri ARG-118 IS CRITICAL FOR FACTOR I COFACTOR ACTIVITIES

Akhilesh K. Singh; Jayati Mullick; John Bernet; Arvind Sahu

Herpesvirus saimiri (HVS) is a lymphotropic virus that causes T-cell lymphomas in New World primates. It encodes a structural homolog of complement control proteins named complement control protein homolog (CCPH). Previously, CCPH has been shown to inhibit C3d deposition on target cells exposed to complement. Here we have studied the mechanism by which it inactivates complement. We have expressed the soluble form of CCPH in Escherichia coli, purified to homogeneity and compared its activity to vaccinia virus complement control protein (VCP) and human complement regulators factor H and soluble complement receptor 1. The expressed soluble form of CCPH bound to C3b (KD = 19.2 μm) as well as to C4b (KD = 0.8 μm) and accelerated the decay of the classical/lectin as well as alternative pathway C3-convertases. In addition, it also served as factor I cofactor and supported factor I-mediated inactivation of both C3b and C4b. Time course analysis indicated that although its rate of inactivation of C4b is comparable with VCP, it is 14-fold more potent than VCP in inactivating C3b. Site-directed mutagenesis revealed that Arg-118, which corresponds to Lys-120 of variola virus complement regulator SPICE (a residue critical for its enhanced C3b cofactor activity), contributes significantly in enhancing this activity. Thus, our data indicate that HVS encodes a potent complement inhibitor that allows HVS to evade the host complement attack.


Journal of Virology | 2009

Mapping of Functional Domains in Herpesvirus Saimiri Complement Control Protein Homolog: Complement Control Protein Domain 2 Is the Smallest Structural Unit Displaying Cofactor and Decay-Accelerating Activities

Akhilesh K. Singh; Viveka Nand Yadav; Kalyani Pyaram; Jayati Mullick; Arvind Sahu

ABSTRACT Herpesvirus saimiri encodes a functional homolog of human regulator-of-complement-activation proteins named CCPH that inactivates complement by accelerating the decay of C3 convertases and by serving as a cofactor in factor I-mediated inactivation of their subunits C3b and C4b. Here, we map the functional domains of CCPH. We demonstrate that short consensus repeat 2 (SCR2) is the minimum domain essential for classical/lectin pathway C3 convertase decay-accelerating activity as well as for factor I cofactor activity for C3b and C4b. Thus, CCPH is the first example wherein a single SCR domain has been shown to display complement regulatory functions.

Collaboration


Dive into the Jayati Mullick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sankar Addya

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arvind Sahu

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Gopa Biswas

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Vijayasarathy

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Nibedita Lenka

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Haider Raza

United Arab Emirates University

View shared research outputs
Researchain Logo
Decentralizing Knowledge