Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jayme L. Dahlin is active.

Publication


Featured researches published by Jayme L. Dahlin.


Nature Chemical Biology | 2015

The promise and peril of chemical probes

C.H. Arrowsmith; James E. Audia; Christopher M. Austin; Jonathan B. Baell; Jonathan Bennett; Julian Blagg; C. Bountra; Paul E. Brennan; Peter J. Brown; Mark Edward Bunnage; Carolyn Buser-Doepner; Robert M. Campbell; Adrian Carter; Philip Cohen; Robert A. Copeland; Ben Cravatt; Jayme L. Dahlin; Dashyant Dhanak; A. Edwards; Mathias Frederiksen; Stephen V. Frye; Nathanael S. Gray; Charles E. Grimshaw; David Hepworth; Trevor Howe; Kilian Huber; Jian Jin; Stefan Knapp; Joanne Kotz; Ryan G. Kruger

Chemical probes are powerful reagents with increasing impacts on biomedical research. However, probes of poor quality or that are used incorrectly generate misleading results. To help address these shortcomings, we will create a community-driven wiki resource to improve quality and convey current best practice.


Journal of Medicinal Chemistry | 2017

The Essential Medicinal Chemistry of Curcumin

Kathryn M. Nelson; Jayme L. Dahlin; Jonathan Bisson; James G. Graham; Guido F. Pauli; Michael A. Walters

Curcumin is a constituent (up to ∼5%) of the traditional medicine known as turmeric. Interest in the therapeutic use of turmeric and the relative ease of isolation of curcuminoids has led to their extensive investigation. Curcumin has recently been classified as both a PAINS (pan-assay interference compounds) and an IMPS (invalid metabolic panaceas) candidate. The likely false activity of curcumin in vitro and in vivo has resulted in >120 clinical trials of curcuminoids against several diseases. No double-blinded, placebo controlled clinical trial of curcumin has been successful. This manuscript reviews the essential medicinal chemistry of curcumin and provides evidence that curcumin is an unstable, reactive, nonbioavailable compound and, therefore, a highly improbable lead. On the basis of this in-depth evaluation, potential new directions for research on curcuminoids are discussed.


Journal of Medicinal Chemistry | 2015

PAINS in the assay: chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS.

Jayme L. Dahlin; J. Willem M. Nissink; Jessica M. Strasser; Subhashree Francis; LeeAnn Higgins; Hui Zhou; Zhiguo Zhang; Michael A. Walters

Significant resources in early drug discovery are spent unknowingly pursuing artifacts and promiscuous bioactive compounds, while understanding the chemical basis for these adverse behaviors often goes unexplored in pursuit of lead compounds. Nearly all the hits from our recent sulfhydryl-scavenging high-throughput screen (HTS) targeting the histone acetyltransferase Rtt109 were such compounds. Herein, we characterize the chemical basis for assay interference and promiscuous enzymatic inhibition for several prominent chemotypes identified by this HTS, including some pan-assay interference compounds (PAINS). Protein mass spectrometry and ALARM NMR confirmed these compounds react covalently with cysteines on multiple proteins. Unfortunately, compounds containing these chemotypes have been published as screening actives in reputable journals and even touted as chemical probes or preclinical candidates. Our detailed characterization and identification of such thiol-reactive chemotypes should accelerate triage of nuisance compounds, guide screening library design, and prevent follow-up on undesirable chemical matter.


Nature Reviews Drug Discovery | 2015

Mitigating risk in academic preclinical drug discovery

Jayme L. Dahlin; James Inglese; Michael A. Walters

The number of academic drug discovery centres has grown considerably in recent years, providing new opportunities to couple the curiosity-driven research culture in academia with rigorous preclinical drug discovery practices used in industry. To fully realize the potential of these opportunities, it is important that academic researchers understand the risks inherent in preclinical drug discovery, and that translational research programmes are effectively organized and supported at an institutional level. In this article, we discuss strategies to mitigate risks in several key aspects of preclinical drug discovery at academic drug discovery centres, including organization, target selection, assay design, medicinal chemistry and preclinical pharmacology.


Future Medicinal Chemistry | 2014

The essential roles of chemistry in high-throughput screening triage

Jayme L. Dahlin; Michael A. Walters

It is increasingly clear that academic high-throughput screening (HTS) and virtual HTS triage suffers from a lack of scientists trained in the art and science of early drug discovery chemistry. Many recent publications report the discovery of compounds by screening that are most likely artifacts or promiscuous bioactive compounds, and these results are not placed into the context of previous studies. For HTS to be most successful, it is our contention that there must exist an early partnership between biologists and medicinal chemists. Their combined skill sets are necessary to design robust assays and efficient workflows that will weed out assay artifacts, false positives, promiscuous bioactive compounds and intractable screening hits, efforts that ultimately give projects a better chance at identifying truly useful chemical matter. Expertise in medicinal chemistry, cheminformatics and purification sciences (analytical chemistry) can enhance the post-HTS triage process by quickly removing these problematic chemotypes from consideration, while simultaneously prioritizing the more promising chemical matter for follow-up testing. It is only when biologists and chemists collaborate effectively that HTS can manifest its full promise.


Assay and Drug Development Technologies | 2016

How to Triage PAINS-Full Research.

Jayme L. Dahlin; Michael A. Walters

Nonspecific bioactivity and assay artifacts have gained increasing attention in recent years. This focus has arisen primarily from the publication of a set of chemical substructures, termed pan assay interference compounds (PAINS), which are associated with promiscuous bioactivity and assay interference in real and virtual high-throughput screening (HTS) campaigns. Despite an increasing awareness in the HTS and medicinal chemistry communities about the liabilities of these compounds, articles featuring PAINS and PAINS-like compounds are still being published. In this perspective, we describe some of the factors we believe are driving this resource-sapping trend. We also provide what we hope are helpful insights that may lead to the earlier recognition of these generally nontranslatable compounds, thus preventing the propagation of PAINS-full costly research.


Critical Reviews in Biochemistry and Molecular Biology | 2015

Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases

Jayme L. Dahlin; Xiaoyue Chen; Michael A. Walters; Zhiguo Zhang

Abstract During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.


Nature Communications | 2017

Assay interference and off-target liabilities of reported histone acetyltransferase inhibitors

Jayme L. Dahlin; Kathryn M. Nelson; Jessica M. Strasser; Dalia Barsyte-Lovejoy; Magdalena M. Szewczyk; Shawna Organ; Matthew Cuellar; Gurpreet Singh; Jonathan H. Shrimp; Nghi Nguyen; Jordan L. Meier; C.H. Arrowsmith; Peter J. Brown; Jonathan B. Baell; Michael A. Walters

Many compounds with potentially reactive chemical motifs and poor physicochemical properties are published as selective modulators of biomolecules without sufficient validation and then propagated in the scientific literature as useful chemical probes. Several histone acetyltransferase (HAT) inhibitors with these liabilities are now routinely used to probe epigenetic pathways. We profile the most commonly used HAT inhibitors and confirm that the majority of them are nonselective interference compounds. Most (15 out of 23, 65%) of the inhibitors are flagged by ALARM NMR, an industry-developed counter-screen for promiscuous compounds. Biochemical counter-screens confirm that most of these compounds are either thiol-reactive or aggregators. Selectivity panels show many of these compounds modulate unrelated targets in vitro, while several also demonstrate nonspecific effects in cell assays. These data demonstrate the usefulness of performing counter-screens for bioassay promiscuity and assay interference, and raise caution about the utility of many widely used, but insufficiently validated, compounds employed in chemical biology.A substantial obstacle in basic research is the use of poorly validated tool compounds with purported useful biological functions. Here, the authors systematically profile widely used histone acetyltransferase inhibitors and find that the majority are nonselective interference compounds.


Antimicrobial Agents and Chemotherapy | 2014

Pneumocystis jirovecii Rtt109, a Novel Drug Target for Pneumocystis Pneumonia in Immunosuppressed Humans

Jayme L. Dahlin; Theodore J. Kottom; Junhong Han; Hui Zhou; Michael A. Walters; Zhiguo Zhang; Andrew H. Limper

ABSTRACT Pneumocystis pneumonia (PcP) is a significant cause of morbidity and mortality in immunocompromised patients. In humans, PcP is caused by the opportunistic fungal species Pneumocystis jirovecii. Progress in Pneumocystis research has been hampered by a lack of viable in vitro culture methods, which limits laboratory access to human-derived organisms for drug testing. Consequently, most basic drug discovery research for P. jirovecii is performed using related surrogate organisms such as Pneumocystis carinii, which is derived from immunosuppressed rodents. While these studies provide useful insights, important questions arise about interspecies variations and the relative utility of identified anti-Pneumocystis agents against human P. jirovecii. Our recent work has identified the histone acetyltransferase (HAT) Rtt109 in P. carinii (i.e., PcRtt109) as a potential therapeutic target for PcP, since Rtt109 HATs are widely conserved in fungi but are absent in humans. To further address the potential utility of this target in human disease, we now demonstrate the presence of a functional Rtt109 orthologue in the clinically relevant fungal pathogen P. jirovecii (i.e., PjRtt109). In a fashion similar to that of Pcrtt109, Pjrtt109 restores H3K56 acetylation and genotoxic resistance in rtt109-null yeast. Recombinant PjRtt109 is an active HAT in vitro, with activity comparable to that of PcRtt109 and yeast Rtt109. PjRtt109 HAT activity is also enhanced by the histone chaperone Asf1 in vitro. PjRtt109 and PcRtt109 showed similar low micromolar sensitivities to two reported small-molecule HAT inhibitors in vitro. Together, these results demonstrate that PjRtt109 is a functional Rtt109 HAT, and they support the development of anti-Pneumocystis agents directed at Rtt109-catalyzed histone acetylation as a novel therapeutic target for human PcP.


Nature Chemical Biology | 2015

Corrigendum: The promise and peril of chemical probes

C.H. Arrowsmith; James E. Audia; Christopher M. Austin; Jonathan B. Baell; Jonathan Bennett; Julian Blagg; C. Bountra; Paul E. Brennan; Peter J. Brown; Mark Edward Bunnage; Carolyn Buser-Doepner; Robert M. Campbell; Adrian Carter; Philip R. Cohen; Robert A. Copeland; Ben Cravatt; Jayme L. Dahlin; Dashyant Dhanak; A. Edwards; Mathias Frederiksen; Stephen V. Frye; Nathanael S. Gray; Charles E. Grimshaw; David Hepworth; Trevor Howe; Kilian Huber; Jian Jin; Stefan Knapp; Joanne Kotz; Ryan G. Kruger

Nat. Chem. Biol. 11, 536–541 (2015); published online 21 July 2015; corrected after print 16 September 2015. In the version of this Commentary initially published, there were several errors in the author list and author affiliations. Bryan Roth was incorrectly listed as “Brian Roth” and his correct affiliations are: The National Institute of Mental Health Psychoactive Active Drug Screening Program (NIMH PDSP), Department of Pharmacology, The University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Collaboration


Dive into the Jayme L. Dahlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Athena K. Petrides

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ben Cravatt

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Jin

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge